
Title

Contents

Index

Chapter1 Introduction

Chapter2 Data Set Basics

Chapter3 Variables and Expressions

Chapter4 Grids and Regions

Chapter5 Animations and GIF images

Chapter6 Customizing Plots

Chapter7 Handing String Data Symbols

Chapter8 Working with Special Data Sets

Chapter9 Computing Environment

Chapter10 Converting to NetCDF

Chapter11 Writing External Functions

Commands Reference

Glossary

Appendix A External Functions

Appendix B PPLUS Guide

Appendix C Ferret-Specific PPLUS Enhancements

FERRET

USER'S GUIDE

Version 5.5

NOAA/PMEL/TMAP

Steve Hankin
Jon Callahan, Ansley Manke

Kevin O'Brien, Joe Sirott
January 15, 2003

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/ferret_icon_large.htm

About the Cover
The cover of this User's Guide was produced by Ferret. From the top down the
plots are: "TOGA-TAO SST," time series from the Tropical Pacific TAO array;
"Levitus Climatological SST," an equal area projection of level one of the annual
Climatological Atlas of the World Oceans by Sydney Levitus of NOAA/NODC;
"Perturbation Solution," a visualization of abstract functions by Dr. Ping Chang;
"Vents Megaplume Thermal Structure," vertical temperature profiles of undersea
thermal vents from the NOAA Vents program.

Contents

Chapter 1: INTRODUCTION

1. OVERVIEW
1. Ferret User's Group
2. Ferret Home Page

2. GETTING STARTED
1. Concepts

1. Thinking like a Ferret:
2. Unix command line switches
3. Sample sessions

1. Accessing a NetCDF data set
2. Reading an ASCII data file
3. Using viewports
4. Using abstract variables
5. Using transformations
6. Using algebraic expressions
7. Finding the 20-degree isotherm

3. COMMON COMMANDS
4. COMMAND SYNTAX
5. GO FILES

1. Demonstration files
2. GO tools
3. Writing GO tools

1. Documenting GO tools
2. Preserving the Ferret state in GO tools
3. Silent GO tools
4. Arguments to GO tools
5. Documentation and checking arguments to GO tools
6. Flow Control in GO tools
7. Debugging GO tools

6. SAMPLE DATA SETS
7. UNIX TOOLS
8. HELP

1. Unix on-line help
2. Examples and demonstrations
3. Help from within Ferret
4. Web-based information

Chapter 2: DATA SET BASICS

1. OVERVIEW
2. NETCDF DATA

1. Multi-file NetCDF data sets
2. Non-standard NetCDF data sets
3. NetCDF and non-standard calendars

3. TMAP-FORMATTED DATA
4. BINARY DATA

1. FORTRAN-structured binary files
1. Records of uniform length
2. Records of non-uniform length
3. Fortran binary files, variables on different grids.

2. Stream binary files
1. Simple stream files
2. Mixed stream files
3. Byte-swapped stream files

5. ASCII DATA
1. Reading ASCII files
2. Reading "DELIMITED" data files

6. TRICKS TO READING BINARY AND ASCII FILES
7. ACCESS TO REMOTE DATA SETS WITH DODS

1. What is DODS?
2. Accessing Remote Data Sets
3. Debugging Access to Remote DODS Data Sets
4. Security
5. Sharing Data Sets via DODS
6. DODS caching
7. Proxy servers

Chapter 3: VARIABLES AND EXPRESSIONS

1. VARIABLES
1. Variable syntax
2. File variables
3. Pseudo-variables

1. Grids and axes of pseudo-variables
4. User-defined variables
5. Abstract variables
6. Missing value flags

1. Missing values in input files

2. Missing values in user-defined variables
3. Missingvalues in output NetCDF files
4. Displaying the missing value flag

7. Returning properties of variables
2. EXPRESSIONS

1. Operators
2. Multi-dimensional expressions
3. Functions

1. MAX
2. MIN
3. INT
4. ABS
5. EXP
6. LN
7. LOG
8. SIN
9. COS

10. TAN
11. ASIN
12. ACOS
13. ATAN
14. ATAN2
15. MOD
16. DAYS1900
17. MISSING
18. IGNORE0
19. RANDU
20. RANDN
21. RHO_UN
22. THETA_FO
23. RESHAPE
24. ZAXREPLACE
25. XSEQUENCE, YSEQUENCE, ZSEQUENCE, TSEQUENCE
26. FFTA
27. FFTP
28. SAMPLEI
29. SAMPLEJ
30. SAMPLEK
31. SAMPLEL
32. SAMPLEIJ
33. SAMPLET_DATE
34. SAMPLEXY

35. SCAT2GRIDGAUSS_XY
36. SCAT2GRIDGAUSS_XZ
37. SCAT2GRIDGAUSS_YZ
38. SCAT2GRIDLAPLACE_XY
39. SCAT2GRIDLAPLACE_XZ
40. SCAT2GRIDLAPLACE_YZ
41. SORTI
42. SORTJ
43. SORTK
44. SORTL
45. TAUTO_COR
46. XAUTO_COR

4. Transformations
1. General information about transformations
2. Transformations applied to irregular regions
3. General information about smoothing transformations
4. @DIN—definite integral
5. @IIN—indefinite integral
6. @AVE—average
7. VAR—weighted variance
8. MIN—minimum
9. @MAX—maximum

10. @SHF:n—shift
11. @SBX:n—boxcar smoother
12. @SBN:n—binomial smoother
13. @SHN:n—Hanning smoother
14. @SPZ:n—Parzen smoother
15. @SWL:n—Welch smoother
16. @DDC—centered derivative
17. @DDF—forward derivative
18. @DDB—backward derivative
19. @NGD—number of good points
20. @NBD—number of bad points
21. @SUM—unweighted sum
22. @RSUM—running unweighted sum
23. @FAV:n—averaging filler
24. @FLN:n—linear interpolation filler
25. @FNR:n—nearest neighbor filler
26. @LOC—location of
27. @WEQ—weighted equal; integration kernel
28. @ITP—interpolate

29. @CDA—closest distance above
30. @CDB—closest distance below
31. @CIA—closest index above
32. @CIB—closest index below

5. IF-THEN logic ("masking")
6. Lists of constants ("constant arrays")

3. EMBEDDED EXPRESSIONS
1. Special calculations using embedded expressions

4. DEFINING NEW VARIABLES
1. Global, local, and default variable definitions

5. DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS

Chapter 4: GRIDS AND REGIONS

1. OVERVIEW
2. GRIDS

1. Defining grids
2. Time axes and calendars
3. Dynamic grids and axes

1. Dynamic grids
2. Dynamic axes
3. Dynamic pseudo-variables

4. Regridding
1. Regridding transformations

5. Modulo regridding
1. Modulo regridding statistics

3. REGIONS
1. Latitude
2. Longitude
3. Depth
4. Time
5. Delta
6. @ notation
7. Modulo axes

1. Subspan Modulo Axes
8. Region Conflicts

4. FERRET PROGRAM LIMITS

Chapter 5: ANIMATIONS AND GIF IMAGES

1. OVERVIEW

1. Animating on the fly
2. Note on using whirlgif to make a movie

2. CREATING AN HDF MOVIE
3. DISPLAYING AN HDF MOVIE
4. ADVANCED MOVIE-MAKING

1. REPEAT command
1. Initializing the color table
2. Making movies in batch mode

5. CREATING GIF IMAGES
6. CREATING MPEG ANIMATIONS

Chapter 6: CUSTOMIZING PLOTS

1. OVERVIEW
2. GRAPHICAL OUTPUT

1. Ferret graphical output controls
2. PPLUS graphical output commands

3. AXES
1. Ferret axis controls
2. PPLUS axis commands
3. Overlaying symbols on a time axis

4. LABELS
1. Adding labels
2. Listing labels
3. Removing movable labels
4. Axis labels and title
5. Ferret label controls
6. PPLUS label commands
7. Positioning labels using the mouse pointer
8. Labeling details with arrows and text

5. COLOR
1. Text and line colors2

1. Ferret color controls for lines
2. PPLUS text and line color commands

2. Shade and fill colors
1. Ferret shade and fill color controls
2. PPLUS shade color commands

6. FONTS
1. Ferret font and text color
2. PPLUS font and text color commands

7. PLOT LAYOUT

1. Ferret layout controls
1. Viewports
2. Pre-defined viewports
3. Advanced usage of viewports

2. PPLUS layout commands
3. Controlling the white space around plots

8. CONTOURING
1. Ferret contour controls

1. /LEVELS qualifier
2. PPLUS contour commands

9. PPLUS SPECIAL SYMBOLS
10. MAP PROJECTIONS AND CURVILINEAR COORDINATES

1. Three-argument (curvilinear) version of SHADE, FILL, CONTOUR, and VECTOR
2. Gridded data sets on curvilinear coordinates
3. Layered (sigma) coordinates
4. Map Projections

1. Using Map Projection scripts
2. Overlays with Map Projections
3. Map Projection scripts

Chapter 7: HANDLING STRING DATA: STRING VARIABLES AND "SYMBOLS"

1. STRING VARIABLES
1. String arrays

2. STRING FUNCTIONS
1. STRCMP(string1, string2)
2. STRLEN(string1)
3. UPCASE(string1)
4. DNCASE(string1)
5. STRINDEX(string1, substring)
6. SUBSTRING(string1, offset, len)
7. STRCAT(string1, str2)
8. STRFLOAT(string1)
9. SPAWN command

10. Algebraic operations with string variables.
1. Logical operators with strings
2. Shift transformation of string arrays
3. Strings in IF-THEN-ELSE
4. String concatenation with "+":
5. Strings as Function arguments
6. Regridding string arrays

11. NetCDF input and output of string data
3. SYMBOL COMMANDS
4. AUTOMATICALLY GENERATED SYMBOLS
5. USE WITH EMBEDDED EXPRESSIONS
6. ORDER OF STRING SUBSTITUTIONS
7. CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS
8. USING SYMBOLS IN COMMAND FILES
9. PLOT+ STRING EDITING TOOLS

10. SYMBOL EDITING
11. SPECIAL SYMBOLS

Chapter 8: WORKING WITH SPECIAL DATA SETS

1. WHAT IS NON-GRIDDED DATA?
2. POINT DATA

1. Getting point data into Ferret
2. How point data is structured in Ferret

1. Working with dates
3. Subsampling gridded fields onto point locations and times
4. Defining gridded variables from point data
5. Visualization techniques for point data

3. VERTICAL PROFILES
1. How collections of profiles are structured in Ferret
2. Getting profile data into Ferret
3. Defining vertical sections from profiles
4. Visualization and analysis techniques for profile sections
5. Subsampling gridded fields onto profile coordinates

4. COLLECTIONS OF TIME SERIES
5. COLLECTIONS OF 2-DIMENSIONAL GRIDS
6. LAGRANGIAN DATA

1. Visualization techniques for Lagrangian data
7. SIGMA COORDINATE DATA

1. Visualization techniques for sigma coordinate data
2. Analysis techniques for sigma coordinate data

8. CURVILINEAR COORDINATE DATA
1. Visualization techniques for curvilinear coordinate data
2. Analysis techniques for curvilinear coordinate data

9. POLYGONAL DATA
1. Visualization techniques for polygonal data
2. Analysis techniques for polygonal data

Chapter 9: COMPUTING ENVIRONMENT

1. SETTING UP TO RUN FERRET
2. FILES AND ENVIRONMENT VARIABLES USED BY FERRET
3. MEMORY USE
4. HARD COPY AND METAFILE TRANSLATION

1. Hard copy
2. Metafile translation

5. OUTPUT FILE NAMING
6. INPUT FILE NAMING

1. Relative version numbers

Chapter 10: CONVERTING TO NetCDF

1. OVERVIEW
2. SIMPLE CONVERSIONS USING FERRET
3. WRITING A CONVERSION PROGRAM

1. Creating a CDL file with Ferret
2. The CDL file

1. Dimensions
2. Variables
3. Data

3. Standardized NetCDF attributes
4. Directing data to a CDF file
5. Advanced NetCDF procedures

1. Staggered grid
2. Hyperslabs
3. Unevenly spaced coordinates
4. Evenly spaced coordinates (long axes)
5. "Modulo" axes
6. Reversed-coordinate axes
7. Converting time word data to numerical data

6. Example CDL file
4. CREATING A MULTI-FILE NETCDF DATA SET

Chapter 11: WRITING EXTERNAL FUNCTIONS

1. OVERVIEW
2. GETTING STARTED

1. Getting example/development code

3. QUICK START EXAMPLE
1. The times2bad20 function

4. ANATOMY OF AN EXTERNAL FUNCTION
1. The ~_init subroutine (required)
2. The ~_compute subroutine (required)
3. The ~_work_size subroutine (required when work arrays are defined)
4. The ~_result_limits subroutine (required if result has a custom or abstract axis)
5. The ~_custom_axes subroutine (required if result has a custom axis)

5. NOTES AND SUGGESTIONS
1. Inheriting axes
2. Loop indices
3. Reduced axes
4. String Arguments

6. UTILITY FUNCTIONS
1. EF_Util.cmn
2. Available utility functions

1. ef_set_desc(id, desc)
2. ef_set_num_args(id, num)
3. ef_set_axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc)
4. ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn)
5. ef_set_arg_name(id, arg, name)
6. ef_set_arg_desc(id, arg, desc)
7. ef_set_arg_unit(id, arg, unit)
8. ef_set_arg_type(id, arg, type)
9. ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt)

10. ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn)
11. ef_set_axis_reduction(id, Xred, Yred, Zred, Tred)
12. ef_set_axis_limits(id, axis, lo, hi)
13. ef_set_custom_axis(id, axis, lo, hi, delta, unit, modulo)
14. ef_set_num_work_arrays(id, nwork)
15. ef_set_work_array_dims(id, iarray, xlo, ylo, zlo, tlo, xhi, yhi, zhi, thi)
16. ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
17. ef_get_arg_info(id, iarg, arg_name, arg_title, arg_units)
18. ef_get_arg_string(id, iarg, text)
19. ef_get_axis_info(id, iarg, axname, ax_units, backward, modulo, regular)
20. ef_get_axis_dates(id, iarg, taxis, numtimes, datebuf)
21. ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
22. ef_get_arg_ss_extremes(id, num_args, ss_min, ss_max)
23. ef_get_bad_flags(id, bad_flag, bad_flag_result)
24. ef_get_coordinates(id, arg, axis, lo, hi, coords)
25. ef_get_box_size(id, arg, axis, lo, hi, size)
26. ef_get_box_limits(id, arg, axis, lo, hi, lo_lims, hi_lims)

27. ef_get_one_val(id, arg, value)
28. ef_version_test (version)
29. ef_bail_out(id, text)

Part II: COMMANDS REFERENCE

1. ALIAS
2. CANCEL

1. CANCEL ALIAS
2. CANCEL AXIS
3. CANCEL DATA_SET
4. CANCEL EXPRESSION
5. CANCEL GRID
6. CANCEL LIST
7. CANCEL MEMORY
8. CANCEL MODE
9. CANCEL MOVIE

10. CANCEL SYMBOL
11. CANCEL REGION
12. CANCEL VARIABLE
13. CANCEL VIEWPORT
14. CANCEL WINDOW

3. CONTOUR
4. DEFINE

1. DEFINE ALIAS
2. DEFINE AXIS
3. DEFINE GRID
4. DEFINE REGION
5. DEFINE SYMBOL
6. DEFINE VARIABLE
7. DEFINE VIEWPORT

5. ELIF
6. ELSE
7. ENDIF
8. EXIT
9. FILE

10. FILL
11. FRAME
12. GO
13. HELP
14. IF

1. IF-THEN-ELSE conditional execution
2. IF-THEN-ELSE logic for masking

15. LABEL
16. LET
17. LIST
18. LOAD
19. MESSAGE
20. PALETTE
21. PATTERN
22. PAUSE
23. PLOT
24. POLYGON
25. PPLUS
26. QUERY
27. QUIT
28. REPEAT
29. SAVE
30. SAY
31. SET

1. SET AXIS
2. SET DATA_SET
3. SET EXPRESSION
4. SET GRID
5. SET LIST
6. SET MEMORY
7. SET MODE

1. SET MODE ASCII_FONT
2. SET MODE CALENDAR
3. SET MODE DEPTH_LABEL
4. SET MODE DESPERATE
5. 1SET MODE DIAGNOSTIC
6. SET MODE IGNORE_ERROR
7. SET MODE INTERPOLATE
8. SET MODE LABELS
9. SET MODE LOGO

10. SET MODE JOURNAL
11. SET MODE LATIT_LABEL
12. SET MODE LONG_LABEL
13. SET MODE METAFILE
14. SET MODE POLISH
15. SET MODE PPLLIST
16. SET MODE REFRESH

17. SET MODE SEGMENTS
18. SET MODE STUPID
19. SET MODE VERIFY
20. SET MODE WAIT

8. SET MOVIE
9. SET REGION

10. SET VARIABLE
11. SET VIEWPORT
12. SET WINDOW

32. SHADE
33. SHOW

1. SHOW ALIAS
2. SHOW AXIS
3. SHOW COMMANDS
4. SHOW DATA_SET
5. SHOW EXPRESSION
6. SHOW FUNCTION
7. SHOW GRID
8. SHOW LIST
9. SHOW MEMORY

10. SHOW MODE
11. SHOW MOVIE
12. SHOW QUERIES
13. SHOW REGION
14. SHOW SYMBOL
15. SHOW TRANSFORM
16. SHOW VARIABLES
17. SHOW VIEWPORT
18. SHOW WINDOWS

34. SPAWN
35. STATISTICS
36. UNALIAS
37. USE
38. USER

1. Objective analysis
2. Scattered sampling

39. VECTOR
40. WHERE
41. WIRE

GLOSSARY

Appendix A: EXTERNAL FUNCTIONS

1. COMPRESSI
2. COMPRESSJ
3. COMPRESSK
4. COMPRESSL
5. COMPRESSI_BY
6. COMPRESSJ_BY
7. COMPRESSK_BY
8. COMPRESSL_BY
9. CONVOLVEI

10. EOF_SPACE
11. EOF_STAT
12. EOF_TFUNC
13. FINDHI
14. FINDLO
15. FFT_IM
16. FFT_RE
17. FFT_INVERSE
18. WRITEV5D
19. ZAXREPLACE_AVG
20. ZAXREPLACE_BIN

Appendix B: PPLUS Users Guide

1. INTRODUCTION
2. GETTING STARTED

1. VAX/VMS
2. Required Definitions

1. Optional Definitions
3. COMMAND FORMAT

1. THE COMMANDS
4. COMMAND SYNOPSIS

1. FILES
1. Data Files
2. Other Data Entry
3. PPLUS Output Files
4. PPLUS Command Files

2. AXIS
1. X- And Y-axis

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_509
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_510
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_511
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_512
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_513
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_514
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_515
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_516
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_517
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_518
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_519
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_520
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_521
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_522
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_523
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_524
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_525
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_526
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_527
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_528
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPID_529

2. Time Axis
3. LABELS
4. COMMAND PROCEDURES
5. COLOR AND FONTS
6. PLOT APPEARANCE
7. PLOT GENERATION
8. DATA MANIPULATION
9. HELP

5. BEGINNERS GUIDE
1. FORMAT
2. 5.2 VARS
3. SKP AND RD
4. PLOT AND CONTOUR
5. EXAMPLES

1. Unformatted Data, X-Y Plot
2. Pre-gridded Data, Contour Plot
3. Ungridded Data, Contour Plot
4. Time Series Plot

6. ROUTING PLOT FILES
1. VAX/VMS

1. Plot Files And Mom
2. Plotting Devices
3. Examples

7. PPLUS COMMAND FILES
1. INTRODUCTION
2. SYMBOL SUBSTITUTION
3. GENERAL GLOBAL SYMBOLS
4. EPIC GLOBAL SYMBOLS
5. COMMAND FILE LOGIC
6. ARITHMETIC
7. SYMBOL ARRAYS
8. SPECIAL FUNCTIONS

1. $EDIT
2. $EXTRACT
3. $INTEGER
4. $LENGTH
5. $LOCATE
6. $ELEMENT

9. LABELS
1. AXIS LABELING
2. EMBEDDED STRING COMMANDS
3. Pen Selection

4. Character Slant
5. Subscripting, Superscripting And Back Spacing

10. DATA FORMATS
1. SEQUENTIAL FORMATS
2. BIBO FORMAT
3. EPIC FORMAT
4. DSF FORMAT

11. ADVANCED COMMANDS
1. %OPNPLT/qualifier
2. %CLSPLT/qualifiers
3. %PLTLIN,n
4. %LABEL/qualifier,x,y,ipos,ang,chsiz,label
5. %RANGE,min,max,ntic
6. %XAXIS/qualifier,xlow,xhigh,xtic,y[,nmstc][,lint][,xunit][,ipos][,csize][,frmt]
7. %YAXIS/qualifier,ylow,yhigh,ytic,x[,nmstc][,lint]

[,yunit][,ipos][,csize][,frmt]
8. PLOT5, PPLUS DIFFERENCES
9. COMMAND DESCRIPTION

1. @file_name/qualifier arg1 arg2 arg3 ...
2. AUTO,ON/OFF
3. AUTOLAB,ON/OFF
4. AXATIC,ATICX,ATICY
5. AXLABP,LABX,LABY
6. AXLEN,XLEN,YLEN
7. AXLINT,LINTX,LINTY
8. AXLSZE,HGTX,HGTY
9. AXNMTC,NMTCX,NMTCY

10. AXNSIG,NSIGX,NSIGY
11. AXSET,TOP,BOT,LEFT,RIGHT
12. AXTYPE,TYPEX,TYPEY
13. BAUD,IB
14. BOX,ON/OFF
15. C
16. CLSPLT
17. CONPRE,prefix
18. CONPST,postfix
19. CONSET,HGT,NSIG,NARC,DASHLN,SPACLN,CAY,NRNG,DSLAB
20. CROSS,ICODE
21. DATPT,type,mark
22. DEBUG on/off
23. DEC symbol

24. DELETE symbol
25. DFLTFNT,font
26. DIR,arg
27. ECHO,on/off
28. ENGLISH
29. ENTER
30. EVAR/qualifier,x-var,y-var
31. GET,file_name
32. GRID[,LINEAR]
33. HELP,arg
34. HLABS,n,height
35. HLP,arg
36. F expression THEN
37. INC sym
38. LABS/qualifier,n,X,Y,JST,label
39. LABSET,HLAB1,HXLAB,HYLAB,HLABS
40. LEV,arg,arg,arg ...
41. LIMITS,value,comparison,flag
42. LINE,n,MARK,TYPE,XOFF,YOFF,DN1,UP1,DN2,UP2
43. LINFIT,n,XIMIN,XIMAX,XOMIN,XOMAX
44. LIST,IMIN,IMAX,JMIN,JMAX,VCOMP,arg
45. LISTSYM
46. LLABS,n,X,Y,TYPE
47. MARKH,n,SIZE
48. METRIC
49. NLINES
50. ORIGIN,XORG,YORG
51. PEN,n,ipen
52. PLOT/qualifiers,label
53. PLOTV/qualifiers,VANG,INC,label
54. PLOTUV/qualifiers,VANG,INC,label
55. PLTNME,fname
56. PLTYPE,ICODE
57. RD/qualifier,NX,NY,TYPE,n,file_name
58. RESET
59. RETURN
60. RLABS,n,ANG
61. ROTATE,ON/OFF
62. RWD,file_name
63. SAVE,file_name
64. SET sym arg
65. SHOW symbol

66. SIZE,width,height
67. SKP,n,file_name
68. SMOOTH,n
69. SPAWN
70. TAXIS/qualifier,DT,arg
71. TEKNME[,fname]
72. TICS,SMX,LGX,SMY,LGY,IX,IY
73. TIME,TMIN,TMAX,TSTART
74. TITLE,HLAB,label
75. TKTYPE,TYPE
76. TRANSXY,n,XFACT,XOFF,YFACT,YOFF
77. TXLABP,n
78. TXLINT,low_int,hi_int
79. TXLSZE,ht
80. TXNMTC,n
81. TXTYPE,type,style
82. VARS,NGRP,A1,A2,A3,...,Ai
83. VECKEY/qualifier,x,y,ipos,format
84. VECSET,length,scale
85. VECTOR/qual,skipx,skipy,label
86. VELVCT,rlenfact,inc
87. VIEW/qualifiers,ZSCALE,IC,ZMIN,ZMAX,VCOMP,label
88. WHILE expression THEN
89. WINDOW,ON/OFF
90. XAXIS,XLO,XHI,XTIC
91. XFOR,frmt
92. XLAB,label
93. YAXIS,YLO,YHI,YTIC
94. YFOR,frmt
95. YLAB,label

10. FONT TABLES

Appendix C: PLOTPLUS PLUS: Ferret Enhancements to PLOTPLUS

1. PLOTPLUS HISTORY, EVOLUTION
2. ENHANCED COMMANDS DESCRIPTION

1. ALINE/qualifier line#, minx, miny, maxx, maxy, set
2. CLSPLT
3. COLOR n, red, green, blue
4. CONSET hgt, nsig, narc, dashln, spacln, cay, nrng, dslab, spline_tension, draftsman
5. FILL/qualifier

6. LINE n, mark, use
7. LIST arg
8. PEN n, ndx
9. PLTNME metafile_name

10. PLTYPE icode META
11. SHADE/qualifier
12. SHAKEY do_key, orient, klab_siz, klab_inc, klab_dig, klab_len, kx_lo, kx_hi, ky_lo,

ky_hi
13. SHASET

3. GKS LINE BUNDLES
4. HARD COPY

Index

! A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

!

*
@
 region specifier

 regridding

 transformations

@ASN
 regridding transformation

@AVE
 transformation @AVE

@CDA transformation
 nearest neighbor above

@CDB transformation
 nearest neighbor below

@CIA transformation
 nearest index below

@CIB transformation
 nearest index below

@DDB transformation
 backward derivative

@DDC transformation
 centered

@DDF transformation
 forward derivative

@DIN transformation
 definite integral

@EVNT
 transformation

@FAV transformation
 averaging filler

@FLN transformation
 linear integration

@FNR transformation
 nearest neighbor

@IIN transformation
 indefinite

@ITP
 interpolation

@LOC transformation
 location of

@MAX regridding
@MAX transformation
 maximum value

@MIN transformation
 minimum value

@MOD transformation
 Modulo regridding

@MODMIN regridding statistics
@MODSUM regridding statistics
@MODVAR regridding statistics
@NBD transformation
 number of bad points

@NGD
 regridding transformation

 transformation

@RSUM transformation
 running unweighted sum

@SBN transformation
 binomial smoother

@SBX transformation
 boxcar smoother

@SHF transformation
 shift data

@SHN transformation
 Hanning smoother

@SPZ transformation

 Parzen

@SUM
 regridding transformation

@SUM transformation
 unweighted

@SWL transformation
 Welch

@VAR transformation
 weighted variance

@WEQ
 weighted equal

A

ABS function
abstract expression
abstract variable
ACOS function
action command
algebraic expression
ALIAS
 defining

 definition

 SHOW ALIAS

aliases for Ferret commands
 ALIAS for DEFINE ALIAS

 FILE for SET DATA/EZ

 FILL for CONTOUR/FILL

 LET for DEFINE VARIABLE

 PAUSE for MESSAGE

 SAVE for LIST/FORMAT=CDF

 SAY for MESSAGE/CONTINUE

 UNALIAS for CANCEL ALIAS

 USE for SET DATA/FORMAT=CDF

ALINE
 pplus command

analysis techniques
 curvilear coordinate data

 polygonal coordinates

 sigma coordinate data

animations
 creating

 FRAME

 general discussion

 on the fly

 SET MOVIE

 viewing

append
 slab to NetCDF file

 time step to NetCDF file

 to Vis5D file

arguments
 quoted

 script

arrow
 text labels

ASCII data
 accessing

 output

 reading "delimited"

 reading, examples

 SET DATA/EZ

ASIN function
ASN
 regridding transformation

aspect ratio
 SET WINDOW/ASPECT

association
 @ASN regridding

ATAN function
ATAN2 function
attributes

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1740

 NetCDF attributes

 NetCDF global attributes

autocorrelation
 TAUTO_COR function

 XAUTO_COR function

AVE
 regridding transformation

average
 @AVE regridding

 monthly climatology

 over complex regions in space

 transformation @AVE

averaging filler
 @FAV transformation

axis
 /DEFINE

 /NOAXIS

 box size

 CANCEL

 customizing

 DEFINE

 definition of

 dynamic

 dynamic, definition

 inheriting

 irregular

 label

 limits

 modulo

 monthly, defining

 multiple axis plots

 NetCDF axis definitions

 plot formats

 PLOT/AXES

 PPLUS commands

 redefining

 regular

 removing from plot

 RETURN=XAXIS etc.

 reversed

 SET modulo

 transformation

 units

 values, using

B

background color
 indices for

 options

backslash syntax
 escaping special characters

backward derivative
 @DDB transformation

bad/missing data
 setting message

bar charts
batch mode
 gif output

 movie making

 postscript output

 -server

big-endian
binary data
 byte-swapped

 output

 reading

 record structure

 SET DATA/EZ

binomial smoother
 @SBN transformation

bold
box, grid
boxcar smoother
 @SBX transformation

BYTEORDER

C

calendar
 360 day

 converting time

 default

 DEFINE AXIS/CALENDAR

 defining calendar axis

 Gregorian

 MODE CALENDAR

 NetCDF attribute

 noleap

 regridding between

 specifying time at T0

 specifying time values

 standard

CANCEL
 /ALL

CANCEL ALIAS
CANCEL AXIS
 /ALL

 /MODULO

CANCEL DATA
 /ALL

CANCEL DATA_SET
CANCEL EXPRESSION
CANCEL LIST
 /ALL

 /APPEND

 /FILE

 /FORMAT

 /HEAD

 /PRECISION

CANCEL MEMORY
 /ALL

 /PERMANENT

 /TEMPORARY

CANCEL MODE
CANCEL MOVIE
 /ALL

CANCEL REGION
 /ALL

 /I/J/K/L

 /X/Y/Z/T

CANCEL SYMBOL
CANCEL VARIABLE
 /ALL

 /DATASET

CANCEL WINDOW
 /ALL

case sensitivity
 NetCDF variables

 writing to NetCDF

CDA transformation
 nearest neighbor above

CDB transformation
 nearest neighbor below

CDL file
 advanced usage

 definition of

 for Ferret conversion

 sample

 using

child_axis

 NetCDF

CIA transformation
 nearest index below

climatology
 climatological axes

 creating

CLSPLT
 pplus command

COARDS
 definition

 NetCDF standard

 non-COARDS files

CMYK
 color postscript

collections
 time series

 vertical profiles

color
 background, plot

 contouring

 custom control, lines

 custom control, shading

 Ferret control, lines

 Ferret controls, shading

 GO tools

 hard copy

 in HDF movie

 lines

 lines, PLOT/LINE

 of text labels

 palette

 patterns

 PPLUS COLOR command

 PPLUS line color

 PPLUS shading

 PPLUS SHASET

color key
 controlling attributes

color key (colorbar)
 CONTOUR/KEY

 FILL/KEY

 POLYGON/KEY

 WHERE to position

color_thickness
 for contour lines

 for lines

columns
 LIST/WIDTH=columns

 SET DATA/COLUMNS examples

 SET DATA/EZ/COLUMNS=

 SET DATA/STREAM/COLUMNS=

COLUMNS
 alias for SET DATA/FORM=DELIMITED

command
 abbreviated syntax

 Commands Reference

 continuation

 executing a Unix command

 SHOW

 syntax

command line
 starting Ferret

 Unix command

COMPRESSI
COMPRESSI_BY
compressing data
COMPRESSJ
COMPRESSJ_BY
COMPRESSK
COMPRESSK_BY

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1702
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1707
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1703
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1704
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1708
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1705
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1709

COMPRESSL
COMPRESSL_BY
concatenation
 of strings

conformability
CONSET
 pplus command

constant arrays
context
 definition

 setting the

continuation lines
CONTOUR
 /AXES=

 /COLOR

 /D
 /FILL

 /FRAME

 /HLIMITS

 /I /J /K /L

 /KEY

 /LINE

 /NOAXIS

 /NOKEY

 /NOLABELS

 /OVERLAY

 /PATTERN

 /PEN

 /SIGDIG

 /SIZE

 /SPACING

 /TRANSPOSE

 /VLIMITS

 /X/Y/Z/T

 curvilinear version

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1706
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1710

 dash controls

 demo script

 examples

 extrema, annotating

 label controls

 line type

 NOAXIS

 options

 pplus controls

 spline_tension

contouring
controlling color key
converting units
convolution functions
coordinates
 curvilinear coordinate data

 in NetCDF file

 interpolation

 pseudo-variables

 RETURN= start,end coord

 SHOW GRID /W/Y/Z/T

 spacing, NetCDF

 underlying grid

correlation
 in variance script

COS function
COSINE (latitude)
creating
curl
curly brackets
curvilinear coordinates
 curvilinear coordinate data

 gridded data

 plot commands

 scripts for

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1711

D

dashed lines
data
 ASCII

 CANCEL DATA_SET

 data set

 editing

 NetCDF

 SET DATA_SET

 SHOW SET

 STATISTICS

 TMAP-formatted

data set
 definition

 examples

 EZ

 general discussion

 locating

 MC: multi CDF

 multi CDF, creating

 NetCDF

 save and restore

dates
 in ASCII files

 in NetCDF file

 SESSION_DATE

DAYS1900 function
DDC transformation
 centered

DDF transformation
 forward derivative

debugging
 complex expressions

 go tools

 SET MODE DIAGNOSTIC

 SET MODE IGNORE_ERROR

DEFINE
DEFINE ALIAS
DEFINE AXIS
 /DEPTH

 /EDGES

 /FILE

 /FROM_DATA

 /MODULO

 /NAME

 /NPOINTS

 /T0

 /UNITS

 /X/Y/Z/T

 redefining an axis

DEFINE GRID
 /FILE

 /LIKE

 /X/Y/Z/T

DEFINE REGION
 /DEFAULT

 /DI/DJ/DK/DL

 /DX/DY/DZ/DT

 /I/J/K/L

 /X/Y/Z/T

DEFINE SYMBOL
DEFINE VARIABLE
 /BAD=

 /DATASET

 /QUIET

 /UNITS

 User-defined variables

DEFINE VIEWPORT
 /AXES

 /TEXT

 /XLIMITS

 /YLIMITS

definite integral
 @DIN transformation

delimited data files
 reading

 SET DATA/FORM=DELIMITED

delta function
delta notation
demo scripts
density
 RHO_UN function

 ZAXREPLACE function

depth
 DEFINE AXIS/DEPTH

 go scripts

 SET MODE DEPTH_LABEL

 specifying ranges

derivative
 backward @DBF

 centered @DDC

 forward @DDF

 transformations

descriptor
descriptor file
 creating

 example

 locating

 TMAP-formatted data

descriptor files
 formatting notes

DIAGNOSTIC mode
digitize
digits
dimensions

 multi-dimensional expression

 NetCDF

direct access
 Fortran files

divergence
DNCASE function
DODS
 .dodsrc file

 accessing remote data

 caching

 initialization file

 locating data

 password access

 proxy servers

 security

 sharing data

drifter data
dynamic axis
dynamic grid
 definition

 SHOW GRID/DYNAMIC

dynamic height

E

ECHO
edges
 DEFINE AXIS/EDGES

ELIF
ELSE
 conditional execution

 masking

embed point data in axis
embedded expressions
 immediate mode

 with symbols

empirical orthogonal functions
 eigenfunctions

 EOF_SPACE

 EOF_STAT

 EOF_TFUNC

 time amplitude fcns

endian
ENDIF
environment
 computing

 environment variables
 list of

 listing with Fenv

environment variable
EOF functions
 eof_space

 eof_stat

 eof_tfunc

errors
 generating messages

 insufficient memory

 MODE IGNORE_ERROR

 syntax for generating

event mask
EVNT
 transformation

Excel spreadsheet data
exclamation mark syntax
EXIT
 /COMMAND_FILE

 /LOOP

 /PROGRAM

 /PROMPT

 /SCRIPT

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1716
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1715
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1718
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1720
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1721
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1714
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1717
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1719

 QUIT

EXP function
expression
 algebraic

 CANCEL

 definition

 MODE POLISH

 SET default context

 SHOW

external function
 axis inheritance

 compute subroutine

 custom axes

 ef utility functions

 ef_bail_out

 ef_get_arg_info

 ef_get_arg_ss_extremes

 ef_get_arg_string

 ef_get_arg_subscripts

 ef_get_axis_dates

 ef_get_axis_info

 ef_get_bad_flags

 ef_get_box_limits

 ef_get_box_size

 ef_get_coordinates

 ef_get_desc

 ef_get_one_val

 ef_get_res_subscripts

 ef_set_arg_desc

 ef_set_arg_name

 ef_set_arg_type

 ef_set_arg_unit

 ef_set_axis_extend

 ef_set_axis_influence

 ef_set_axis_inheritance

 ef_set_axis_limits

 ef_set_axis_reduction

 ef_set_custom_axis

 ef_set_num_args

 ef_set_num_work_arrays

 ef_set_piecemeal_ok

 ef_set_work_array_dims

 EF_Util.cmn

 ef_version_test

 example function

 getting EF example code

 getting started

 inheriting axes

 init subroutine

 list of included functions

 loop indices

 reduced axes

 result_limits

 string arguments

 structure of EF

 utility functions

 working storage

extrema
 FINDHI function

 FINDLO function

 transformations

EZ data
 definition

 FILE command

 missing data markers

 reading ASCII files

 SET DATA/EZ

F

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1701
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1723
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1729

Faddpath
Fapropos
FAV transformation
 averaging filler

Fdata
Fdescr
Fenv
FER_DATA
FER_DESCR
FER_DIR
FER_DSETS
FER_GO
FER_GRIDS
FER_PALETTE
Ferret Home Page
ferret_paths
FFT
 FFT amplitude

 FFT phase

 FFT_IM(imaginary)

 FFT_INVERSE

 FFT_RE(real)

Fgo
Fgrids
Fhelp
FILE
 alias for SET DATA/EZ

files
 ASCII

 ASCII "delimited"

 binary

 byte-swapped

 delimited

 DODS

 LIST

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1733
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1737
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1734

 mixed types

 NetCDF formatted

 reading, demo

 real*8

 SET DATA

 stream

 supported stream types

 TMAP-formatted

FILL
 CONTOUR/FILL

 curvilinear version

fill value
 file creation

 on output to NetCDF

fill values
 and missing values

filler (missing value)
 @FAV averaging filler

 @FLN linear interpolation

 @FNR nearest neighbor filler

filtering
 transformations

 with CONVOLVE functions

FINDHI function
FINDLO function
flag (missing value)
FLN transformation
 linear interpolation filler

flow control (scripts)
 ELIF

 IF
 IF-THEN-ELSE

 SET MODE IGNORE_ERROR

flowline
 VECTOR/FLOW

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1713
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1722
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1727

Fman
FNR transformation
 nearest neighbor filler

font
 Ferret controls

 PPLUS commands

 PPLUS fonts

 pplus symbol fonts

format
 data sets

 Ferret

 HDF

 LIST/FORMAT=

 MODE ASCII_FONT

 MODE LATIT_LABEL

 MODE LONG_LABEL

 NetCDF

 numeric axis labels

 SET DATA/FORMAT

 SET LIST/FORMAT

 standardized data

 TMAP

 TMAP format

formatting
 LIST/FORMAT

 LIST/HEADING

 numerical output

 plots

forward derivative
 @DDF transformation

Fourier transforms
 FFT_INVERSE function

 FFTA function

 FFTP function

Fpalette
Fprint

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1736

 Unix command

Fpurge
 Unix file naming

FRAME
 /FILE=filename

 /FORMAT=format

 /FORMAT=GIF

 /FORMAT=HDF

 creating HDF movie

 -gif batch mode

 movies in GIF format

 PLOT/FRAME

Fsort
 Unix

 Unix file naming

Ftoc
function
 grid-changing

 list of functions

G

getting point data into Ferret
GIF image
 creating GIF images

 FRAME/FORMAT=GIF

 -gif command line switch

GKS
 color map

 graphic metafile

 line bundles

 MODE METAFILE

 MODE SEGMENTS

gksm2ps
GLOSSARY

GO
 /HELP

 arguments

 demonstration files

 file, definition

 files

 files, running

 quoted arguments

 tools, included with Ferret

 Unix file naming

 writing GO tools

graphics
 /SET_UP

 hard copy

 memory

 MODE METAFILE

 output controls

 viewport

graticule
 overlay on plot

grave accent
 embedded expressions

 order of precedence

 syntax

Gregorian year
grid
 /DEFINE

 box size

 conformable

 default

 DEFINE

 DEFINE AXIS

 definition

 dynamic

 dynamic, definition

 grid box

 grid file

 of expressions

 of pseudo-variables

 regridding

 RESHAPE function

 RETURN=GRID name

 SET

 staggered

grid-changing functions
gridded data sampled at points
gridding scattered data
 defining grid from data

 objective analysis

 SCAT2GRIDGAUSS_XY function

 SCAT2GRIDGAUSS_XZ function

 SCAT2GRIDGAUSS_YZ function

 SCAT2GRIDLAPLACE_XY function

 SCAT2GRIDLAPLACE_XZ function

 SCAT2GRIDLAPLACE_YZ function

gridfile
 searching

 UD and DU

GT
 locating files

gui
 command line switch

H

Hanning smoother
 @SHN transformation

hard copy
 Fprint, postscript files

 gif images

 MODE

help
 HELP

 Unix on-line

 Web-based

 within Ferret

histograms
HLIMITS
home page
hyperslabs
 NetCDF

I

IF
 conditional execution

 masking

 with strings

IGNORE0 function
images, GIF
immediate mode
 BAD=

 embedded expressions

 mathematical expressions

 PRECISION=

 width

indefinite integral
 @IIN transformation

indices
 RETURN= start,end index

inheritance
 of axes

initialization file
insufficient memory
INT function

integral
 definite

 indefinite

 transformations

integration
 @DIN definite integral

 @IIN indefinite integral

 over irregular regions

interpolation
isopycnal
 ZAXREPLACE function

isosurface
 @LOC transformation

 example

ITP
 interpolation

J

journal file
 GO files

 log of Ferret commands

 naming

 -nojnl startup

 SET MODE JOURNAL

 writing

K

key
 contour and fill plots

 FILL/KEY

 for PLOT/VS

 positioning with PPL commands

 SHADE/KEY

 use WHERE to position

L

LABEL command
 /NOUSER

 moveable labels

labels
 adding

 axis

 contour line

 Ferret controls

 fonts

 MODE

 MODE CALENDAR

 MODE DEPTH_LABEL

 MODE LABELS

 MODE LATIT_LABEL

 MODE LOGO

 MODE LONG_LABEL

 mouse to position

 movable labels

 plot

 positioning with mouse

 PPL LIST LABELS

 PPLUS commands

 removing

 with pointing arrow

land mass
 graphical

latitude
layout
 axes

 controlling white space

 customizing labels

 go tools

 metafile translation

 plot layout controls

least squares
 regression scripts

LET
levels, contour
 CONTOUR plots

 general discussion

 saving the settings

 SHADE plots

limits
 Ferret program limits

line
 adding contour lines

 connecting plotted points

 CONTOUR/LINE

 hard copy

 line styles

 line styles, go tools

 overlaying contours

 PLOT/LINE/COLOR/THICK

 POLYGON/LINE

LINE
 pplus command

linear interpolation
 @LIN regridding

linear interpolation filler
 @FLN transformation

LIST
 /APPEND

 /CLOBBER

 /D
 /FILE

 /FORMAT

 /HEAD

 /HEADING=ENHANCED

 /I /J /K /L

 /ILIMITS /JLIMITS /KLIMITS /LLIMITS

 /NOHEAD

 /ORDER

 /PRECISION

 /QUIET

 /RIGID

 /SINGLY

 /TITLE="title string"

 /WIDTH=

 /X /Y /Z /T

 /XLIMITS /YLIMITS /ZLIMITS /TLIMITS

 LIST ALINE

 LIST SHAKEY

 LIST SHASET

lists of constants
little-endian
LN function
LOAD
 /D
 /I/J/K/L

 /NAME

 /PERMANENT

 /TEMPORARY

 /X/Y/Z/T

LOC transformation
 location of

local extrema
 FINDHI function

 FINDLO function

location transformation
 @LOC

LOG function
log plot
 2-D plots

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1724
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1728

 demo script

 PLOT/VLOG/HLOG

logarithmic functions
 LN and LOG

Logical operators
 with strings

logo
long_name
 NetCDF variable attributes

longitude
loop

M

map projections
 curviliear coordinate plots

 demo script

 overlays on

 scripts

 using scripts

maps
 basemap to overlay on

 ETOPO data sets

 land script

 overlays using GO tools

masking
 for transformations on irregular regions

 IF-THEN-ELSE logic

mathematical expressions, immediate mode
 BAD=

 PRECISION=

 RETURN=

matrix notation
maximum
 @MAX regridding

 @MAX transformation

 FINDHI function

 local mamima

 MAX function

MC data sets
memory
 cache, default size

 CANCEL MEMORY

 insufficient memory

 large calculations

 loading expressions into

 management

 -memsize switch

 NetCDF

 SET MEMORY

 SET MODE DESPERATE

 SET MODE SEGMENTS

 SHOW MEMORY

MESSAGE
 /CONTINUE

 /ERROR

 /JOURNAL

 /QUIET

 alias PAUSE

metafile
 hard copy

 MODE METAFILE

 naming, automatic

 specifying a name

 translation

minimum
 @MIN regridding

 @MIN transformation

 FINDLO function

 local minima

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1726
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1725
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1730
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1731

 MIN function

MISSING function
missing value flag
 get flag

 setting message

 setting values

MOD function
MODE
 MODE ASCII_FONT

 MODE CALENDAR

 MODE DEPTH_LABEL

 MODE DESPERATE

 MODE DIAGNOSTIC

 MODE IGNORE_ERROR

 MODE INTERPOLATE

 MODE JOURNAL

 MODE LABELS

 MODE LATIT_LABEL

 MODE LONG_LABEL

 MODE METAFILE

 MODE POLISH

 MODE PPLLIST

 MODE REFRESH

 MODE SEGMENTS

 MODE STUPID

 MODE VERIFY

 MODE WAIT

 SET MODE

 SHOW MODE

mode: Ferret state
modulo
 @mod transformation

 attribute, NetCDF

 axis

 axis, DEFINE

 axis, definition

 MOD function

 NetCDF

 regridding

 regridding, definition

 subspan length

 subspan modulo axis

modulo regridding statistics
 MODMAX

 MODMIN

 MODNGD

 MODSUM

 MODVAR

month
monthly axis
 climatological

 creating

mouse
 WHERE command to define position

movies
 animations

MPEG
multi-file data sets
multiple axis plots

N

naming
 file version numbers

 of external functions

 Unix file names

 variables, DEFINE VARIABLE

 variables, in NetCDF files

NaN
 in NetCDF files

NBD transformation
 number of bad point

ncdump
 creating cdl file

 editing .cdf file

 examples

ncgen
 example

 utility

nearest neighbor
 @NRST regridding

nearest neighbor filler
 @FNR transformation

NetCDF
 accessing data with USE

 axis attributes

 axis definition

 case sensitive names

 CDL data initialization

 CDL files

 child_axis

 converting to

 coordinates

 definition

 dimensions

 disordered coordinates

 global attributes

 grid_definition

 hyperslabs

 LIST/FORMAT=CDF

 locating

 long_name

 missing values in

 missing values, output

 modulo axes

 multi-file data sets

 multi-file sets, creating

 NaN in

 parent grid

 permuted axes, /ORDER qualifier

 permuted axis ordering

 reverse-ordered coordinates

 SAVE

 slab_max_index

 slab_min_index

 special axis interpretations

 staggered grids

 strides

 string data

 title of dataset

 USE

 utilities

 variable attributes

 variables

 variables, invalid names

 writing to

NGD
 regridding transformation

 transformation

non-gridded data
 collections

 curvilinear

 point data

 polygonal

 sigma coordinate

 time series

 vertical profiles

notation
 @ notation

NRST

 regridding transformation

number of bad points
 @NBD transformation

number of good points
 @NGD regridding

 @NGD transformation

O

objective analysis
 demo script

on-line help
 Fapropos

 Fhelp

 Ftoc

 Unix on-line help

OPenDAP
operator
 definition

 list of

order of operations
 string substitution

ORDER qualifier
 for LIST

 for SET DATA/FORMAT=CDF

overlay
 CONTOUR/OVERLAY

 overlay tools (scripts)

 PLOT/OVERLAY

 POLYGON/OVERLAY

 SHADE/OVERLAY

 VECTOR/OVERLAY

 WIRE/OVERLAY

P

palette
 CONTOUR/PALETTE

 creation

 directory

 files in $FER_PALETTE

 locating files: Fpalette

 PALETTE command

 POLYGON/PALETTE

 restoring default

 scripts

 SHADE/PALETTE

 testing

parent grid
 NetCDF

Parzen smoother
 @SPZ transformation

pattern
 CONTOUR/PATTERN=

 demo script

 PATTERN command

 POLYGON/PATTERN=

 SHADE/PATTERN=

pause
 MESSAGE

PEN
 PPLUS commands

performance
 initializing NetCDF file

PLOT
 /AXES

 /COLOR

 /D
 /DASH

 /FRAME

 /HLIMITS

 /HLOG

 /I/J/K/L

 /LINE

 /NOLABELS

 /NOYADJUST

 /OVERLAY

 /SET_UP

 /SIZE=

 /SYMBOL

 /THICKNESS

 /TITLE

 /TRANSPOSE

 /VLIMITS

 /VLOG

 /VS

 /X/Y/Z/T

 lines, controlling color and thickness

 log plots

 symbols, controlling size and color

plot name
 PLTNME pplus command

PLOTUV
PLTNME
 pplus command

point data -- how it is structured
POLYGON
 /COLOR

 /COORD_AX

 /D
 /FRAME

 /HLIMITS

 /HLOG

 /KEY

 /LEVELS

 /LINE

 /NOKEY

 /NOLABELS

 /OVERLAY

 /SET_UP

 /THICKNESS

 /TITLE

 /TRANSPOSE

 /VLIMITS

 /VLOG

 log axes

 scripts

portrait
 go scripts

 metafile translation

postscript
 ferret -batch option

 gksm2ps command

potential temperature
 THETA_FO function

PPLUS
 /RESET

 axis commands

 command format

 Ferret Enhancements Guide

 for plot customization

 labels

 MODE ASCII_FONT

 special symbols

 string editing tools

 syntax

 time axes

 Users Guide

precision
 in embedded expressions

 of floating-point variables

print

printing
 hard copy

profile collection structure
profile data into Ferret
projection
 curvilinear coordinates

 map projections

 map projections & curvilinear coordinates

 mp_mask

 overlays

 polar stereographic

 sigma coordinates

 x_page, y_page

pseudo-variable
 definition

 in NetCDF files

 using

Q

qualifiers
 definition

 string substitution

QUERY
 in GO tools

QUIET
QUIT
 alias for EXIT

quotes
 "invalid" variable names

 /VARIABLES="var"

 defining title

 embedded in strings

 for missing arguments

 string arguments

R

RANDN function
random number generator
 RANDU, RANDN functions

reading data files
 ASCII files

 direct access

 FORTRAN-structured

 NetCDF

 SET DATA

 unformatted data

reading scattered data
record axis
record structure
 file
Reduced axes
region
 CANCEL

 DEFINE

 definition

 named

 pre-defined

 save and restore

 SET

 SHOW

 specifying with @

region (irregular)
regressions
regrid
regridding
 @ASN

 @AVE

 @MIN

 @MOD modulo regridding transformation

 @sum

 @XACT

 definition

 demo script

 general concepts

 modulo regridding

 regridding transformations

 RESHAPE function

 statistics

 string arrays

 syntax and examples

relative version
 GO

 numbers

 Unix file naming

renaming variables
REPEAT
 /ANIMATE

 /I/J/K/L

 /LOOP=

 /X/Y/Z/T

 in making animations

reserved names
RESHAPE
 function

RETURN=
 AXIS

 BAD flag

 coordinates of result

 data set information

 DSET

 embedded expressions

 GRID name

 IEND

 ISIZE

 ISTART

 SHAPE

 SIZE

 T0

 TITLE of variable

 UNIT of variable

 XSTART

RGB mapping
 by level

 by value

 percent

RHO_UN function
RSUM transformation
 running unweighted s

running unweighted sum
 @RSUM transformation

S

SAMPLEI function
SAMPLEIJ function
SAMPLEJ function
SAMPLEK function
SAMPLEL function
SAMPLET_DATE fcn
 defined

 examples

SAMPLEXY function
 defined

 examples

sampling
 of string arrays

 scattered sampling

 scripts

SAVE

SAY
 alias for MESSAGE/CONTINUE

 examples

SBN transformation
 binomial

SBX transformation
 boxcar

SCAT2GRIDGAUSS_XY function
SCAT2GRIDGAUSS_XZ function
SCAT2GRIDGAUSS_YZ function
SCAT2GRIDLAPLACE_XY function
SCAT2GRIDLAPLACE_XZ function
SCAT2GRIDLAPLACE_YZ function
scatter plots
scattered sampling
scripts
 writing

seasonal averages
segments
 MODE SEGMENTS

server startup mode
SET
SET AXIS
 /DEPTH

SET DATA
 /EZ

 /EZ/COLUMNS

 /FORMAT

 /FORMAT=CDF

 /FORMAT=FORTRAN format

 /FORMAT=FREE

 /FORMAT=STREAM

 /GRID

 /ORDER

 /RESTORE

 /SAVE

 /SKIP

 /SWAP

 /TYPE

 /TYPE for ASCII file

 /VARIABLES

 ASCII data examples

 data set basics

 Fortran binary data

 NetCDF files

 stream files

SET EXPRESSION
SET GRID
 /RESTORE

 /SAVE

SET LIST
 /APPEND

 /FILE

 /FORMAT

 /HEAD

 /PRECISION

SET MEMORY
SET MODE
 /LAST

 ASCII_FONT

 CALENDAR

 DEPTH_LABEL

 DESPERATE

 DIAGNOSTIC

 IGNORE_ERROR

 INTERPOLATE

 JOURNAL

 LABELS

 LATIT_LABEL

 LOGO

 LONG_LABEL

 METAFILE

 POLISH

 REFRESH

 SEGMENTS

 STUPID

 VERIFY

 WAIT

SET MOVIE
 /COMPRESS

 /FILE

 /LASER

 /START

SET REGION
 /DI/DJ/DK/DL

 /DX/DY/DZ/DY

 /I/J/K/L

 /X/Y/Z/T

SET VARIABLE
 /BAD

 /GRID

 /NAME

 /TITLE

 /UNITS

SET VIEWPORT
SET WINDOW
 /ASPECT

 /CLEAR

 /LOCATION

 /NEW

 /SIZE

setup
 /SET_UP

 setting up to run Ferret

SHADE

 /D
 /FRAME

 /HLIMITS

 /I/J/K/L

 /KEY

 /NOAXIS

 /NOKEY

 /NOLABELS

 /OVERLAY

 /PALETTE

 /TITLE

 /TRANSPOSE

 /VLIMITS

 /X/Y/Z/T

 curvilinear version

SHAKEY
 CONTOUR/KEY

 POLYGON/KEY

 pplus command syntax

 SHADE/KEY

shape (of variable)
SHASET
 pplus command

SHF transformation
 of string arrays

 shift data

shift transformation
 @SHF

Shift transformation
 string arrays

SHN transformation
 Hanning smoother

SHOW
 /ALL

SHOW ALIAS

SHOW AXIS
 /ALL

 /I/J/K/L/X/Y/Z/T

SHOW COMMANDS
SHOW DATA
 /BRIEF

 /FILES

 /FULL

 /VARIABLES

SHOW EXPRESSION
SHOW FUNCTION
SHOW GRID
 /ALL

 /DYNAMIC

 /I/J/K/L

 /X/Y/Z/T

SHOW LIST
 /ALL

SHOW MEMORY
 /ALL

 /FREE

 /PERMANENT

 /TEMPORARY

SHOW MODE
 /ALL

SHOW MOVIE
 /ALL

SHOW QUERIES
SHOW REGION
SHOW SYMBOL
SHOW TRANSFORM
 /ALL

SHOW VARIABLES
 /ALL

 /DATA

 /DIAGNOSTIC

 /USER

SHOW VIEWPORT
 /ALL

SHOW WINDOWS
 /ALL

sigma coordinate data
SIN function
size
 RETURN= # points, variable

slab_max_index
 NetCDF

slab_min_index
 NetCDF

smoothing
 contour lines

 transformations, general

 transformations, smoothing

 with CONVOLVE functions

SORTI function
sorting
 SORTI

 SORTJ

 SORTK

 SORTL

SORTJ function
SORTK function
SORTL function
SPAWN
 string variables

 unix commands

special axis interpretations
 NetCDF

special data
SPZ transformation

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1712

 Parzen

square brackets
 for variable context

 in expressions

 in function arguments

staggered grids
 NetCDF

standard deviation
state (Ferret state)
 in go tools

 SET GRID

 SET MODE

statistical analysis
 demo script

 GO tools for

statistics
 regridding

STATISTICS
 /D
 /I/J/K/L

 /X/Y/Z/T

 BRIEF

stick plot
 PLOTUV command

 stick_vectors script

STRCMP function
stream files
stream format data
streamline
 relation to FLOWLINE

strides
string variables
 arrays of

 changing case

 comparing strings

 concatenating

 converting to float

 from Unix commands

 functions for strings

 length, getting

 logical operators

 NetCDF I/O

 order of precedence

 precedence

 regridding arrays

 sampling functions

 STRCAT function

 STRFLOAT function

 STRINDEX function

 STRLEN function

 SUBSTRING function

 substring functions

strings
 arguments to go tools

 arguments, containing quotes

 editing, PPLUS functions

 function arguments

 IF-THEN-ELSE

structured files
 FORTRAN structured

subroutines (scripts)
subsampling to points
subsampling to profiles
subscript
subspan modulo
 axes

 comparing datasets

 modulo length

SUBSTRING function
substrings

 STRINDEX function

SUM
 regridding transformation

 unweighted sum

SWL transformation
 Welch

symbol
 CANCEL

 commands for

 DEFINE

 editing

 PLOT/SYMBOL=

 point-plot symbols, showing

 pplus symbol fonts

 SHOW

symbols, special
 FERRET_VERSION

 PPLUS symbols

 XPIXEL, YPIXEL

syntax
 commands

 examples

 qualifiers

 region

 regridding

 transformation

 variables

T

TAN function
TAUTO_COR function
tbox
Tektronix
 MODE WAIT

text
 color controls

 fonts

 SET MODE ASCII_FONT

 string variables

 style of plot labels

 symbol editing

THETA_FO function
three-dimensional plot
 WIRE

tic marks
 customizing

 default

time
 axes: MODE CALENDAR

 axis: NetCDF REGULART

 calendars

 converting times for NetCDF files

 converting times to numbers

 non-Gregorian calendar

 output formatting

 overlaying symbols on time plot

 RETURN= T0

 SESSION_TIME

 specifying time at T0

 specifying time region

 time axis PPLUS commands

time series
 locating files

 scripts for

time series analysis
 FFT_IM function

 FFT_RE function

 TAUTO_COR function

title
 CONTOUR/TITLE

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1732
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1735

 data set

 defining variable title

 NetCDF "title" attribute

 plot

 PLOT/TITLE

 SET DATA/TITLE

 SHADE/TITLE

 VECTOR/TITLE

 WIRE/TITLE

TMAP-formatted file
 definition

tools
 Unix tools

transformation
 @AVE average

 @CDA closest distance above

 @CDB closest distance below

 @CIA closest index above

 @CIB closest index below

 @DDB backward derivative

 @DDC centered derivative

 @DDF forward derivative

 @DIN definite integral

 @FAV averaging filler

 @FLN linear interpolation filler

 @FNR nearest neighbor filler

 @IIN indefinite integral

 @LOC location of

 @MAX maximum value

 @MIN minimum value

 @NBD number of bad points

 @NGD number of good points

 @RSUM running unweighted sum

 @SBN binomial smoother

 @SBX boxcar smoother

 @SHF shift data

 @SHN Hanning smoother

 @SPZ Parzen smoother

 @SUM unweighted sum

 @SWL Welch smoother

 @VAR weighted variance

 @WEQ weighted equal

 axis

 definition

 examples

 general information

 regridding

 SHOW

trigonometric functions
 SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2

TSEQUENCE function

U

UNALIAS
unformatted files
units
 axis

 in transformations

 RETURN=UNIT (string)

 SET VARIABLE/UNITS

Unix
 command line

 environment variables

 setting up to run Ferret

 Unix tools

unmapped windows
unweighted sum
 @SUM transformation

 transformation @RSUM

 transformation @SUM

UPCASE function
USE
 SET DATA/FORMAT=CDF

USER
utilities
 NetCDF utilities

 Unix tools

V

variable
 abstract expressions

 abstract, using

 CANCEL

 character

 conformable

 default

 DEFINE

 defining new variables

 global

 local

 missing value flag

 missing values in user-defined

 names, in NetCDF file

 NetCDF

 pseudo-

 reserved names

 returning properties of

 SET

 SET DATA_SET

 SHOW

 syntax

 user

variance

 @VAR regridding

 go tool

 transformation @VAR

VECTOR
 /ASPECTS

 /COLOR

 /D
 /DENSITY

 /FLOWLINE

 /FRAME

 /HLIMITS

 /I/J/K/L

 /LENGTH

 /NOAXIS

 /NOKEY

 /NOLABELS

 /OVERLAY

 /PEN

 /SET_UP

 /TITLE

 /TRANSPOSE

 /VLIMITS

 /X/Y/Z/T

 /XSKIP

 /YSKIP

 curvilinear version

 key, positioning

 scripts

vector plots
 demo script

 scattered

 stick vectors

versions
 GO

 purging

 relative version numbers

 Unix file naming

vertical profile
 example of reading file

vertical sections, defining from profiles
viewport
 advanced usage

 CANCEL

 DEFINE

 demo script

 pre-defined

 SET

 SHOW

Vis5D files
 WRITEV5D function

visualizing curvilinear coordinate data
visualizing Lagrangian data
visualizing point data
visualizing polygonal coordinate data
visualizing profile data
visualizing sigma coordinate data
VLIMITS

W

wait
 MESSAGE

weighted equal
 @WEQ transformation

weighted variance
 @VAR

Welch smoother
 @SWL transformation

WEQ - weighted equal trans
WHERE

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1739

whirlgif for making animatwhirlgif for animations
window
 CANCEL

 SET

 SHOW

 size and shape

 test for open window

windowing
 transformations

WIRE
 /D
 /FRAME

 /I/J/K/L

 /NOLABEL

 /OVERLAY

 /SET_UP

 /TITLE

 /TRANSPOSE

 /VIEWPOINT

 /X/Y/Z/T

 /ZLIMITS

 /ZSCALE

 example

wire frame
world coordinate
World Wide Web
WRITEV5D function

X

X Data Slice
X windows
 setting up to run Ferret

 size and shape

 unmapped

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1738

XACT regridding
XAUTO_COR function
xbox
XPIXEL
XSEQUENCE function
X-Y plot
 PLOT

Y

ybox
YPIXEL
YSEQUENCE function

Z

ZAXREPLACE function
ZAXREPLACE_AVG function
ZAXREPLACE_BIN function
zbox
ZSEQUENCE function

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1741
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/Appendix_A_External_Functions2.htm#_VPINDEXENTRY_1742

Chapter 1: INTRODUCTION

Ch1 Sec1. OVERVIEW

Ferret is an interactive computer visualization and analysis environment designed
to meet the needs of oceanographers and meteorologists analyzing large and
complex gridded data sets. "Gridded data sets" in the Ferret environment may be
multi-dimensional model outputs, gridded data products (e.g., climatologies),
singly dimensioned arrays such as time series and profiles, and for certain classes
of analysis, scattered n-tuples (optionally, grid-able using Ferret's objective
analysis procedures). Ferret accepts data from ASCII and binary files, and from
two standardized, self-describing formats. Ferret's gridded variables can be one to
four dimensions—usually (but not necessarily) longitude, latitude, depth, and time.
The coordinates along each axis may be regularly or irregularly spaced

Ferret offers the ability to define new variables interactively as mathematical
expressions involving data set variables and abstract coordinates. Calculations may
be applied over arbitrarily shaped regions. Ferret's "external functions" framework
allows external code written in FORTRAN, C, or C++ to merge seamlessly into
Ferret at runtime. Using external functions, users may easily add specialized model
diagnostics, advanced mathematical capabilities, and custom output formats to
Ferret. A collection of general utility external functions is included with Ferret.

Ferret provides fully documented graphics, data listings, or extractions of data to
files with a single command. Without leaving the Ferret environment, graphical
output may be customized to produce publication-ready graphics. Graphic
representations include line plots, scatter plots, line contours, filled contours,
rasters, vector arrows, polygonal regions and 3D wire frames. Graphics may be
presented on a wide variety of map projections. Interfaces to integrate with 3D and
animation applications, such as Vis5D and XDataSlices are also provided.

Ferret has an optional point-and-click graphical user interface (GUI). The GUI is
fully integrated with Ferret's command line interface. The user may freely mix text-
based commands with mouse actions (push buttons, etc.). Ferret's journal file will
log all of the actions performed during a session such that the entire session,
including GUI inputs, can be replayed and edited at a later time. The GUI version
is not currently supported, and is not available on all operating systems.

This User's Guide describes only the command line interface to Ferret. Other
documents describe the point and click interface.

Ferret was developed by the Thermal Modeling and Analysis Project (TMAP) at
NOAA/PMEL in Seattle to analyze the outputs of its numerical ocean models and
compare them with gridded, observational data. Model data sets are often multi-
gigabyte in size with mixed 3- and 4-dimensional variables defined on staggered
grids.

Ferret is supported on a variety of Unix workstations with a version also available
for Windows NT/9x. Ferret is available at no charge from anonymous FTP [node
ftp.ferret.noaa.gov] or from the World Wide Web [URL
http://www.ferret.noaa.gov/Ferret].

Ch1 Sec1.1. Ferret User's Group

The Ferret User's Group provides a venue to ask experienced Ferret users for
advice solving problems and to keep abreast of the latest Ferret updates. To
(un)join simply send an e-mail message to

Majordomo@ferret.wrc.noaa.gov

and include a message which says simply

(un)subscribe ferret_users

(Note this must be in the e-mail message BODY—not in the subject line.) To learn
about the user's list without joining send this message instead to the same address:

info ferret_users

http://www.ferret.noaa.gov/Ferret

Ch1 Sec1.2. Ferret Home Page

The Ferret Home Page contains source code distributions, on line documentation,
Users' Group archives, Frequently Asked Questions and more. It is available at

http://www.ferret.noaa.gov/Ferret/FAQ

Ch1 Sec2. GETTING STARTED

A quick way to get to know Ferret is to run the tutorial provided with the
distribution.

% ferret
yes? GO tutorial

If Ferret is not yet installed consult the chapter "Computing Environment" (p. 221).
(The tutorial is also available through the World Wide Web through Ferret's on-
line demonstrations page..) The tutorial demonstrates many of Ferret's features,
showing the user both the commands given and Ferret's textual and graphical
output. You may find the explanations, terms and examples in this manual easier to
understand after running the tutorial.

Ch1 Sec2.1. Concepts

Words in bold below are defined in the glossary of this manual.

In Ferret all variables are regarded as defined on grids. The grids tell Ferret how
to locate the data in space and time (or whatever the underlying units of the grid
axes are). A collection of variables stored together on disk is a data set.

To access a variable Ferret must know its name, data set and the region of its grid

http://www.ferret.noaa.gov/Ferret/FAQ
http://www.ferret.noaa.gov/Ferret/on_line_demonstrations.html
http://www.ferret.noaa.gov/Ferret/on_line_demonstrations.html

that is desired. Regions may be specified as subscripts (indices) or in world
coordinates. Data sets, after they have been pointed to with the SET DATA
command (alias "USE"), may be referred to by data set number or name.

Using the LET command new variables may be created "from thin air" as abstract
expressions or created from combinations of known variables as arbitrary
expressions. If component variables in an expression are on different grids, then
regridding may be applied simply by naming the desired grid.

The user need never explicitly tell Ferret to read data. From start to finish the
sequence of operations needed to obtain results from Ferret is simply:

1) specify the data set

2) specify the region

3) define the desired variable or expression (optional)

4) request the output

For example (Figure 1_1),

yes? USE coads !global sea surface data
yes? SET REGION/Z=0/T="16-JAN-1982"/X=160E:160W/Y=20S:20N
yes? VECTOR uwnd,vwnd !wind velocity vector plot

Ch1 Sec2.1.1. Thinking like a Ferret:

(A discussion on the Ferret outlook on the concepts of data, variables, grids and
other basics of Ferret.)

Plottable variables

For this discussion we will coin the term "plottable variables." There are no non-
plottable variables that will come up in this discussion but "variables" is a bit too
generic. Plottable variables are of 3 types:

● file variables – read from disk files
● user-defined variables – defined by the LET command
● pseudo-variables – regions (I,J,K,L,X,Y,...) used as variables

As much as possible Ferret tries to make all types of variables indistinguishable.
All plottable variables are defined on grids. No plottable variables exists in a
vacuum for Ferret. The grid on which a plottable variable exists tells how to locate
the variable in space and time. In cases where the variables are abstract in
nature—disconnected from space and time—Ferret will associate those variables
with grids that are abstract, too. Where a geographical grid will associate the Nth
position along an axis with a location (like 20 degrees north latitude) an abstract

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch1_fig01.GIF

grid will simply associate the Nth position with the number N. Plottable variables
may be regridded to other grids than the one on which they are defined. (Done with
"G=".)

All references to plottable variables must have a complete context. A complete
context will be described in detail later—briefly it means a region in space, an
interval in time and the data set(s) in which the variables will be found.

Grids

All Ferret grids are 4-dimensional. In most cases the axes have the obvious
interpretation of 3 space coordinates and time but sometimes the axes are abstract.

A grid is composed of 4 axes, each describing the coordinates along one
dimension. 3d, 2d, 1d and 0d grids are regarded as special cases of the full 4
dimensions in which 1 or more axes are set to "NORMAL."

Ferret tries to look at all axes equally—the same syntax of regions and
transformations applies to each. Calendar dates, east-west longitudes and north-
south latitudes are merely convenient ways to format positions along axes that have
special interpretations to people—not to Ferret. (The only exception to this is that
if the Y axis has units of Latitude Ferret will insert cosine(Latitude) factors into
some calculations.)

Axes and grids may be defined by "grid files" (which normally have .GRD
filename extensions). Axes may also be defined by the DEFINE AXIS command;
grids by the DEFINE GRID command.

Contexts

A context is a region or point in space and time and a data set(s). This is the
information needed by Ferret to make sense of a reference to a plottable variable.
Suppose that "U" is a variable in a data set (file) called U_DATA. A command like
"PLOT U" is meaningful only when Ferret knows that it is supposed to be looking
for U in data set U_DATA and knows where in 4-dimensional space it is supposed
to plot.

The context space-time region may be described by a mix of subscript and world
coordinate positions. Subscripts are specified by I=,J=,K=,L= for axes 1 through
4, respectively. World coordinates are specified by X=,Y=,Z=,T=. On the right of
the equal sign a single point may be given or a range specified by low:high may be
given. Special formats are allowed for X= (longitude, e.g. 160W), Y=(latitude, e.g.
23.5S) and time (calendar dates like "7-NOV-1989:12:35:00" in quotation marks).

The data set may be given by name or number. The commands SET DATA and
CANCEL DATA and the D= context descriptor all accept the name of the data set
or its number. The data sets are numbered by the order in which they are pointed to
with SET DATA. This order may be seen with SHOW DATA.

You can tell Ferret the context in 3 places:

1. The program context: Using the commands SET REGION and SET DATA
you can describe a context in which all commands and expressions will be
interpreted. You can look at the program context with SHOW REGION and
SHOW DATA. (The command SET DATA is used both to initialize new data sets
and to make previously initialized sets the current program context. When SET
DATA initializes a new data set that set automatically becomes the data set for the
program context.) Example: SET REGION/Z=50

2. The command context: Using the command qualifiers I,J,K,L,X,Y,Z,T and D
commands like PLOT,CONTOUR,SHADE,LIST and VECTOR can specify
additional context information. Command context information on any axis or on
the data set will replace any program context information on the same axis or the
data set.

3. The variable context: Using the same qualifiers as the command context any
plottable variable name can be modified with additional context information in
square brackets (e.g. LET U200 = U[Z=200,D=U_DATA], or LIST U[I=1:100:5]).
Variable context information on any axis or the data set will replace any program
or command context information on the same axis or the data set.

Transformations

Ferret can transform plottable variables along their axes. Transformations may be

specified only in the variable context. Ferret understands a number of
transformations that may be specified with the space-time region qualifiers. Some
examples: PLOT U[Z=0:100@AVE] — the variable U averaged between Z=0 and
Z=100 LIST/L=1:200 U[L=@SBX:5] — U with a boxcar smoother of width 5
points along L.

Also,

● @FAV (fill data holes with averages)
● @DIN (definite integral) @IIN (indefinite integral)
● @DDC (centered derivative)
● @SHF (shift data a number of points along an axis)
● @MIN (minimum value along an axis)

... and others (see HELP TRANSFORMATIONS inside Ferret)

Ch1 Sec2.2.

Unix command line switches

ferret [-batch<file>.ps][-memsize Mwords] [-unmapped] [-gui] [-
help] [-gif] [-server]

-memsize Mwords
specify the memory (data cache) size in Megawords (default is 6.4)

 If memory is severely limited on a system Ferret's default memory cache size
may be too large to permit execution. In this case use the "-memsize" qualifier on
the command line to specify a smaller cache.

-unmapped
use invisible output windows (useful for creating animations and GIF files)

-gui
start Ferret in point-and-click mode (may not be available on all platforms). This
option is not currently supported. Starting Ferret with ferret -gui will run the
current version of Ferret, but some features may not work. If you need such
features, you will need to use the command-line version of Ferret.

-help
obtain help on the Unix command line options

-nojnl
start Ferret without a journal file. Within the Ferret session, you can use SET
MODE JOURNAL:<filename> to turn on journaling and set the journal file name
if desired.

-gif
Ferret can run in batch mode—without an X server (see also -server below).
Graphical output is buffered, and is stored in a GIF file by executing the FRAME
command. For example:

> ferret -gif

yes? (commands that generate a plot...)

yes? FRAME/FILE=picture.gif

sends the stored graphical output from Ferret to the GIF file picture.gif.

Please note the following when using batch mode:

● Window resizing only works if the window is cleared before resizing the
window. For instance:
 yes? set window/clear/size=0.25
will resize the window while
 yes? set window/size=0.25/clear
will cause an error.

● Avoid metafile commands when running in batch mode. In particular,
 yes? set mode meta

may cause problems.
● Don't create new Ferret windows when running without an X server. The

following command:
 yes? set window/new
will cause Ferret to crash.

-batch
Ferret can generate PostScript files without an X server. If you wish to use this
mode, start Ferret with the -batch option:

ferret -batch <file>.ps

where <file> is the name of the output file. Note that the filename must end with
".ps".

Please note the following when using PostScript mode:

● The PostScript output will not be fully written to the output file until you
exit from Ferret.

● Window sizing commands do not have any effect on PostScript output.
● Avoid metafile commands when running in PostScript mode.
● Don't create new Ferret windows when running without an X server. The

following command:
 yes? set window/new
will cause Ferret to crash.

-server
Run in server mode -- don't stop on message commands. This mode uses primitive
(but faster) command line reading, so it is generally preferred when setting up
Ferret from a pipeor batch process. See the notes above under -gif regarding
window sizing commands.

Ch1 Sec2.3. Sample sessions

This section presents a number of short Ferret sessions that demonstrate common

uses. Data sets used in these sessions and throughout this manual are included with
the distribution. If Ferret is installed on your system, you can duplicate the
examples shown.

Ch1 Sec2.3.1. Accessing a NetCDF data set

In this sample session, the data set "monthly_navy_winds" is specified and certain
aspects of it are examined. The command SHOW DATA/VARIABLES displays
the variables in "monthly_navy_winds" and where on each axis they are defined.
SET REGION specifies where in the grid the user wishes to examine the data.
VECTOR produces a vector plot of the indicated variables over the specified
region.

yes? USE monthly_navy_winds ! specify the data set
yes? SHOW DATA/VARIABLES ! what's in it?
 currently SET data sets:
 1> /opt/local/ferret/fer_dsets/descr/monthly_navy_winds.des
 (default)
 FNOC 2.5 Degree 1 Month Average World-wide Wind Field
name title I J K
 L
UWND ZONAL WIND 1:144 1:73 ...
 1:132
 M/S on grid FNOC251 with -99.9 for missing data
 X=18.8E:18.8E(378.8) Y=91.2S:91.2N
VWND MERIDIONAL WIND 1:144 1:73 ...
 1:132
 M/S on grid FNOC251 with -99.9 for missing data
 X=18.8E:18.8E(378.8) Y=91.2S:91.2N
 time range: 16-JAN-1982 20:00 to 17-DEC-1992 03:30

Ch1 Sec2.3.2. Reading an ASCII data file

Many examples of accessing ASCII data are available later in this manual. See the
chapter, "Data Sets" (p. 31) The simplest access, one variable with one value per

record, looks like this:

% ferret
yes? FILE/VARIABLE=v1 snoopy.dat
yes? PLOT v1
yes? QUIT

Ch1 Sec2.3.3. Using viewports

The command SET VIEWPORT allows the user to divide the output graphics
"page" into smaller display viewports.

In this sample session, we create two plots in two halves of a window (Figure 1_2):

% ferret
yes? USE coads_climatology
yes? SET REGION/X=160E:130W
yes? SET REGION/Y=-10:10/L=5
yes? SET VIEWPORT upper
yes? CONTOUR sst

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch1_fig02.GIF

yes? SET VIEWPORT lower
yes? CONTOUR airt
yes? QUIT

Ch1 Sec2.3.4. Using abstract variables

Abstract variables (expressions that contain no dependencies on disk-resident data)
can be easily displayed with Ferret. See the chapter "Variables and Expressions",
section "Abstract variables" (p. 59), for several examples and detailed information.

For example, a user wishing to examine the function SIN(X) on the interval
[0,3.14] might use (Figure 1_3):

% ferret
yes? PLOT/I=1:100 sin(3.14*I/100)
yes? QUIT

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch1_fig03.GIF

Ch1 Sec2.3.5. Using transformations

A transformation is an operation performed on a variable along a particular axis
and is specified with the syntax "@trn" where "trn" is the name of a
transformation. See the chapter "Variables and Expressions", section
"Transformations" (p. 89), for detailed information.

A user may wish to look at ocean temperatures averaged over a range of depths. In
this sample session, we look at temperatures averaged from 0 to 100 meters of
depth using a data set which has detailed resolution in depth (Figure 1_4). We plot
the data along longitude 160 west from latitude 30 south to 30 north.

% ferret
yes? USE levitus_climatology
yes? SET REGION/Y=30s:30n/X=160W
yes? PLOT temp[Z=0:100@AVE]
yes? QUIT

Ch1 Sec2.3.6. Using algebraic expressions

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch1_fig04.GIF

See the chapter "Variables and Expressions", section "Expressions" (p. 61) for a
description of valid expressions.

In this example, the data set contains raw sea surface temperatures, air
temperatures, and wind speed measurements. We wish to look at a shaded plot of
sensible heat at its first timestep (L=1) (Figure 1_5). We specify a latitude range
and contour levels.

% ferret
yes? USE coads_climatology !monthly COADS climatology
yes? LET kappa = 1 !arbitrary
yes? LET/TITLE="SENSIBLE HEAT" sens_heat = kappa * (airt-sst) *
wspd
yes? SHADE/L=1/LEV=(-20,20,5)/Y=-90:40 sens_heat
yes? QUIT

Ch1 Sec2.3.7. Finding the 20-degree isotherm

Isotherms can be located with the "@LOC" transform, which returns the axis

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch1_fig05.GIF

location where the value of the argument of @LOC first occurs. Thus,
"TEMP[Z=0:200@LOC:20]" locates the first occurrence of the temperature value
20 along the Z axis, scanning all the data between 0 and 200 meters.

A session examining the 20-degree isotherm in mid-Pacific ocean data (Figure
1_6):

% ferret
yes? USE levitus_climatology
yes? SET REG/Y=10s:30n/X=140E:140W
yes? PPL CONSET .12 !label size
yes? CONTOUR temp[Z=0:200@LOC:20]
yes? QUIT

Note that the transformation @WEQ could have been used to display ANY
variable on the surface defined by the 20 degree isotherm.

Ch1 Sec3. COMMON COMMANDS

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch1_fig06.GIF

A quick reference to the most commonly used Ferret commands (typing "SHOW
COMMANDS" at the Ferret prompt lists all commands):

Command Description

USE names the data set to be analyzed (alias for "SET DATA")

SHOW DATA produces a summary of a variable

SHOW GRID examines the coordinates of a grid

SET REGION sets the region to be analyzed

LIST produces a listing of data

PLOT produces a plot

CONTOUR produces a line contour plot

FILL produces a color filled contour plot

SHADE produces a shaded-area plot

VECTOR produces a vector arrow plot

POLYGON plots polygonal regions

DEFINE define new axes, grids, and symbols

STATISTICS produces summary statistics about variables and
expressions

LET defines a new variable

SAVE saves data in NetCDF format

GO executes Ferret commands contained in a file

Information on all Ferret commands is available in Part II, Commands Reference,
of this manual.

Ch1 Sec4. COMMAND SYNTAX

Commands in program Ferret conform to the following template:

COMM [/Q1/Q2...] [SUBCOM[/S1/S2...]] [ARG1 ARG2 ...] [!comment]

where

COMM is a command name yes? LIST

Q1... are qualifiers of the command yes? CONTOUR/SET_UP

SUBCOM is a subcommand name yes? SHOW MODE

S1... are qualifiers of the subcommand yes? SET LIST/APPEND

ARG1... are arguments of commands yes? CANCEL MODE
INTERPOLATE

notes...

● The length of the command line is limited to a maximum of 2048
characters.

● Command lines ending with back slash are regarded as incomplete -- a
special prompt is given to indicate that the next line is a continuation .

● Items in square brackets are optional.
● One or more spaces or tabs must separate the command from the

subcommand and from each of the arguments. Spaces and tabs are optional
preceding qualifiers.

● Multiple commands, separated by semi-colons, can be given on the same
line.

● Command names, subcommand names, and qualifiers require at most 4
characters.
(e.g., yes? CANCEL LIST/PRECISION is equivalent to yes? CANC
LIST/PREC)

● Some qualifiers take an argument following "=" (e.g., yes?
LIST/Y=10S:10N).

● An exclamation mark normally signifies the end of a command and the start
of (optional) comment text.

● The backslash character (\), when placed directly before an exclamation
point (!), apostrophe ('), semicolon (;), or forward slash (/), will hide it
("escape it") from Ferret.

● See the Expressions section (p. 61) for information on algebraic expressions
as arguments to commands

● See the Symbols sections (p. 195) for information on symbol substitution in
commands

Examples:

● A simple command and argument
yes? LIST sst

● A comment on the command line
yes? SET REGION/L=1/X=130:290/Y=-23:23 !
January in the Tropical Pacific

● Commands with qualifiers and arguments
yes? VECTOR/L=30/COLOR=RED u,v
yes? LET/UNITS=M ht = z[GZ=temp] - z0

● Subcommands
yes? SET MODE METAFILE

yes? SET REGION/X=130E:120W/J=20:40/Z=0/T=1-jan-
1982:31-jan-1992

● Symbols used in a command(see p. 195) Note multiple commands on a line
yes? DEFINE SYMBOL lower = -2; DEFINE SYMBOL upper
= 6
yes? SHADE/I=($lower):($upper) temp

● Use Square brackets to specify a variable's dataset or grid, range and
optionally a delta- for the variable, or a transformation (see p.55)
yes? PLOT temp[X=180,L=1:50]
 or
yes? LIST temp[X=130:200@AVE,L=1:50:5]
 or
yes? LET/UNITS=M ht = z[GX=temp] - z0

● Immediate mode expression: enclosed in grave accents. (see p. 109) (The
expression must evaluate to a scalar, and is evaluated before the command
is parsed or executed.)
yes? CONTOUR/Z=`temp[X=180,Y=0,Z=@LOC:15]` salt

● A list of values (constant array) may be formed by enclosing values in curly
brackets. For example in a function call:
yes? LET aday = DAYS1900(1989,{3,6,9},1)

● Text for labels is enclosed in double quotes
yes? VECTOR/TITLE="title_string" x_expr, y_expr
If the string is to contain a quote, the backslash preserves it:
yes? GO my_go_script "\"(-10,10,2)"\"
 sends the string "(-10,10,2)" to the script (see p. 16) for more on go
scripts

Ch1 Sec5. GO FILES

GO files are files containing Ferret commands. They can be executed with the
command "GO filename". Throughout this manual, these files are referred to as
GO scripts or journal files (the file names end in *.jnl). There are two kinds of GO
files provided with the distribution (differing in function, not form)—demos and
tools. A list of the demonstrations and scripts can be found in Ferret's on-line
documentation in "on-line demonstrations".

http://www.ferret.noaa.gov/Ferret/on_line_demonstrations.html

Ch1 Sec5.1.

Demonstration files

Demonstration GO files provide examples of various Ferret capabilities (the
tutorial is such a script) . The demonstration GO files may be executed simply by
typing the Ferret command

yes? GO demo_name
example: yes? GO vector_demo

Below is a list of the demo files provided as of 4/99 (located in directory
$FER_DIR/examples). The Unix command "Fgo demo" will list all GO scripts
containing the string "demo". Use Fgo '*' to see all the scripts that are currently
available on your system.

Name Description

tutorial brief tour through Ferret capabilities

bar_chart_demo plotting bar charts

binary_read_demo binary file reading (version 5.0 and after)

coads_demo view of global climate using the Comprehensive
Ocean-Atmosphere Data Set

constant_array_demo shows {3,5,6} constant-array syntax

custom_contour_demo customized contour plots

depth_to_density_demo contour with a user-defined variable as an axis

dods_demo using DODS to access remote datasets

edit_data_file_demo "hand-editing" variables using NetCDF datasets and
SAVE

ef_eof_demo EOF functions

ef_fft_demo FFT functions

ef_sort_demo using the SORT and SAMPLE functions

ef_wv5d_demo writing Vis5D-formatted files

error_bars making error bars on plots

file_reading_demo reading an ASCII file

fnoc_demo Naval Fleet Numerical Oceanography Center data

levitus_demo T-S relationships using Sydney Levitus'
climatological Atlas of the World Oceans

log_plot_demo log plots using PPLUS in Ferret

mathematics_demo abstract function calculation

mercator_demo mercator map projection

minmax_label_demo use FINDLO and FINDHI to label extrema on a plot

mp_demo map projections

mp_stereo_demo fancy map projection techniques

multi_variable_demo multiple variables with multiple dependent axes

objective_analysis_demo interpolating scattered data to grids

overlay_on_time_axis_demo PLOT/VS and POLYGON over a time axis

palette_demo shows uses of various palettes

pattern_demo patterns on shade and fill plots

plot_swath_demo fill between line plots for "swaths" of color

polymark_demo show use of polymark script

polytube_demo "lagrangian" plots along a path using color fill

regridding_demo tutorial on regridding data

sigma_coordinate_demo how to work with sigma coordinates

spirograph_demo for-fun plots from abstract functions

splash_demo for-fun mathematical color shaded plots

statistics_demo probability distributions

symbol_demo how to use symbols for plot layouts

topographic_relief_demo global topography

trackplot_demo use of trackplot.jnl script

vector_demo vector plots

viewports_demo output to viewports

wire_frame_demo 3D wire frame representation

Ch1 Sec5.2.

GO tools

GO tools are scripts which contain Ferret commands and perform dataset-
independent tasks. For example, "GO land" overlays the outline of the continents
on your plot. (Note: In order for Ferret to locate the GO scripts, the environment
variable FER_GO must be properly defined. See the chapter "Computing
Environment," p. 221, for guidance.)

To run any GO tool, from the Ferret command line, type,

Yes? GO scriptname

Or if the script has arguments, they follow the script name with optional comma
separators.

yes? GO script2 arg1, arg2

To find out about the script, use the /HELP qualifier, which opens the script with
the more command to type the first 20 lines of the script and allow you to see the
documentation at the start of the script.

yes? GO/HELP scriptname

To omit arguments from a GO script,

yes? GO script arg1, , arg3

Or double quotes with a space to indicate the missing item.

yes? GO script arg1 " " arg3

The Unix command Fgo has been provided to assist with locating tools within the
Unix directory hierarchy. For example,

 % Fgo grid displays all tools with the substring "grid" in their names
 % Fgo '*' displays all GO tools and demonstrations

When passing arguments to GO commands sometimes it is necessary to pass
enclosing quotation marks. An common example is the passing of the argument to
the CONTOUR/LEVELS qualifier in cases such as

CONTOUR/LEVELS="(-100) (-10,10,2) (100)" my_var

where there may be blanks embeddd inside of the string. There are 3 methods to
embed quotations inside of strings

1. use "\" to protect the quotation marks in the GO command line

yes? go my_go_script "\"(-100) (-10,10,2) (100)"\"

with the script containing the line

CONTOUR/LEVELS=$1 my_var

2. use "\" to define a symbol which contains the quotation marks

yes? DEFINE my_quoted_string \"$1\"
yes? CONTOUR/LEVELS=($my_quoted_string) my_var

3. use the symbol substitution syntax to add quotes to theGO argument

Yes? CONTOUR/LEVELS=$1&|*>"*"&

Of course, in the above examples one could also simply use

yes? CONTOUR/LEVELS="$1" my_var

Below is a table of the tools provided with your Ferret installation. Some tools
accept optional arguments to control details. Use Fgo -more script_name
for details on a script.

 Tool name Description

OVERLAYS

 basemap a geographical basemap of continents to overlay on

 land overlays continental boundaries (color controls)

 bold_land overlays darker continental boundaries

 fland overlays filled continents (color and resolution controls)

 focean overlays ocean mask (for terrestrial plots)

 graticule sets the plot axis style to use a graticule (rather than
tics)

 tics resets the plot style to use axis tics (rather than a
graticule)

 gridxy overlays a "graticule" labeling the I,J subscripts

 gridxz overlays a "graticule" labeling the I,K subscripts

 gridxt overlays a "graticule" labeling the I,L subscripts

 gridyz overlays a "graticule" labeling the J,K subscripts

 gridyt overlays a "graticule" labeling the J,L subscripts

 gridzt overlays a "graticule" labeling the K,L subscripts

 box draws a box at the specified location on the plot

 ellipse draws an ellipse at the specified location on the plot

MATHEMATICAL

 frequency_histogram makes a frequency distribution plot (histogram) of data

 ts_frequency creates a 2-variable histogram (typically an
oceanographer's TS density diagram)

 polar defines R and THETA from X and Y to perform
(limited) polar plots

 regressx defines variables for linear regression along X axis

 regressy defines variables for linear regression along Y axis

 regressz defines variables for linear regression along Z axis

 regresst defines variables for linear regression along T axis

 unit_square sets unit square as default for abstract variables

 variance defines variables to compute variances and covariances

 var_n refines TVARIANCE with corrected n/n+1 factors

 dynamic_height defines Ferret variables for dynamic height calculations

SAMPLE DISPLAYS

 line_samples draws specimens of the available line styles

 line_thickness draws examples of pen color/thickness styles in PPLUS

 fill_samples draws specimens of the available fill styles

 show_symbols draws specimens of the default symbols

 show_88_syms draws specimens of all 88 PPLUS symbols

GRAPHICS

 bar_chart makes a color-filled bar chart from a line of data

 bar_chart2 makes a bar chart using hollow rectangles

 centered_vectors makes a vector plot with coords at vector midpoints

 scattered_vectors makes a vector plot from an ASCII file: x,y,u,v

 stick_vectors makes a stick vector plot of a line of U,V values

 extremum annotate contour extrema on a plot

 split_z oceanographic-style plot with 2 z-axis scalings

PLOT APPEARANCE

 margins tweak the sizing of the plot on the page

 magnify [factor] increases the data plotting area (area inside the axes)

 unmagnify restores the plot origin and axis lengths to default values

 black sets video background to black, foreground to white

 white sets video background to white, foreground to black

 bold sets up PLOT+ and Ferret to produce bolder-looking
plots

 unbold resets plot environment to normal after "GO bold"

 unlabel [label #] removes a specified (numbered) PPLUS movable label

 remove_logo removes labels 1–3 that form the Ferret logo

 box_plot produces a plot with "bare" axes (no tics, no labels)

 portrait set window for 8.5 x 11 portrait page

 portrait1x2 set window for 8.5 x 11 portrait page and two viewports

 portrait1x3 set window for 8.5 x 11 portrait page and three
viewports

 portrait1x4 set window for 8.5 x 11 portrait page and four
viewports

 portraitNxN set window for 8.5 x 11 portrait page and NxN
viewports

 reminder place small annotations in upper left corner of plot

COLOR

 try_palette [pal] displays palette appearance for various numbers of
color levels

 try_centered_palette displays centered palette appearance for various
numbers of levels

 exact_colors sets up Ferret and PPLUS to modify individual colors in
a color palette

 squeeze_colors modifies a color palette by squeezing and stretching the
color scale

MULTIPLE X AND Y AXES (run demo: yes? GO
multi_variable_plots)

 left_axis_plot plots a single variable preparing for a 2nd axis on the
right

 right_axis_plot overlays a plot of a single variable using an axis on the
right

 multi_xaxis_plot1 draws a plot formatted for later overlays using multiple
X axes

 multi_xaxis_overlay overlays a variable with a distinct X axis

 multi_yaxis_plot1 draws a plot formatted for later overlays using multiple
Y axes

 multi_yaxis_overlay overlays a variable with a distinct Y axis

MAP PROJECTIONS (run demo: yes? GO mp_demo)

 mp_~name~ individual projections include
bonne, craster_parabolic, eckert_greifendorff,
eckert_iii, eckert_v, hammer, lambert_cyl,
mcbryde_fpp, mercator, orthographic, plate_caree,
polyconic, sinusoidal, stereographic_eq,
stereographic_north, stereographic_south,
vertical_perspective, wagner_vii, winkel_i

 mp_aspect set the appropriate window aspect ratio for this map
projection

 mp_fland overlays "map projected" filled continents (color
controls)

 mp_graticule overlays "map projected" graticule (color controls)

 mp_grid.jnl Associates a data grid with a predefined map projection.

 mp_label plots a label using world coordinates

 mp_land overlays "map projected" continental boundaries (color
controls)

 mp_land_stripmap creates a land-centric, interrupted "stripmap" using the
current map projection

 mp_line overlays "map projected" plotted data

 mp_ocean_stripmap creates an ocean-centric, interrupted "stripmap" using
the current map projection

 mp_polygon overlays "map projected" polygons

 mp_polymark Plot polygons using a predefined map projection.

 mp_polytube Plot a colored tube using a predefined map projection.

 mp_trackplot Plot a trackplot using a predefined map projection

 mp_viewport_aspect Define a viewport for plotting map projections

SAMPLING A GRIDDED FIELD

 bullseye locate a bullseye in a 2d field

 digitize obtain data values from a plot using the cursor

TESTS

 test tests proper functioning of FER_GO

 ptest produces a quick test plot

 squares creates a filled-area test plot

Ch1 Sec5.3.

Writing GO tools

A GO tool ("GO script," "journal file," ...) is simply a sequence of Ferret
commands stored in a file and executed with the GO command. Writing a simple
GO tool requires nothing more than typing normal commands into a file.

To write a robust GO tool that may be shared, however, certain guidelines should
be followed:

 1) the GO tool should be well documented

 2) the GO tool should leave the Ferret context unmodified

 3) the GO tool may need to run "silently"

 4) the GO tool may need to accept arguments (a maximum of 99 parameters)

Ch1 Sec5.3.1. Documenting GO tools

Documentation consists primarily of well-chosen comment lines (lines beginning
with an exclamation mark). In addition, a line of this form should be included:

! Description: [one-line summary of your GO tool]

This line is displayed by the Fgo tool.

Ch1 Sec5.3.2. Preserving the Ferret state in GO tools

Often a complex GO tool requires setting data sets, modifying the current region,
etc. But to a user executing this tool its behavior may seem erratic if the user's
previous context is modified by running the tool. A tool can restore the previous
state of Ferret by these means:

region: Save the current default region with the command DEFINE
REGION/DEFAULT save. Restore it at the end of your GO tool with
SET REGION save.

data set: Save the current default data set with SET DATA/SAVE. Restore it at
the end of your GO tool with SET DATA/RESTORE.

grid: Save the current default grid set with SET GRID/SAVE. Restore it at the
end of your GO tool with SET GRID/RESTORE.

modes: If you modify a mode inside your GO tool by issuing a SET MODE or a
CANCEL MODE command the original state of that mode can be
restored using SET MODE/LAST.

Ch1 Sec5.3.3. Silent GO tools

If a user has set mode "verify" then by default every line of your GO tool,
including comment lines, will be displayed at the screen as Ferret processes it. To
make your GO tool run silently include the command CANCEL MODE VERIFY
at the beginning of the GO tool and SET MODE/LAST VERIFY at the end. If the
backslash character "\" is found at the beginning of any line that single line will not
be displayed regardless of the state of MODE VERIFY. Thus the command
"\CANCEL MODE VERIFY" is often the first line of a GO tool. Note also that the
command LET/SILENT is useful in GO tools which need to define variables.

Ch1 Sec5.3.4.

Arguments to GO tools

Arguments (parameters) may be passed to GO tools on the command line. There is
an upper limit of 99 arguments allowed. For example,

yes? GO land red

passes the string "red" into the GO file named land.jnl. Inside the GO tool the
argument string "red" is substituted for the string "$1" wherever it occurs. The "1"
signifies that this is the first argument—similar logic can be applied to $1,... $99 or
$0 where $0 is replaced by the name of the GO tool itself. "$*" is replaced by all
the arguments as a single string, separated by spaces.

If there are more than 9 arguments, the syntax $nn (nn may be 1 through 99) is
equivalent to to ($nn), however the parentheses enclosed form is generally
preferred as it avoids ambiguities. Specifying $12.dat is equivalent to ($12).dat but
is less clear.

As Ferret performs the substitution of $1 (or other) arguments it offers a number of
string processing and error processing options. For example, without these options,
if a user failed to supply an argument to "GO land" then Ferret would not know
what to substitute for $1 and it would have to issue an error message. A default
value can be supplied by the GO tool writer using the syntax

$1%string%

for example,

$1%black%

inside land.jnl would default to "black" if no color were specified. Note that in the
example percent signs were used to delimit the default string but any of the
characters ! # $ % or & also work as delimiters.

If the argument is a 2-digit number, and we are making a substitution, the
replacement text goes inside the parentheses. For example, plot the variable
passed as argument 1 with the color given by argument 12, or green if no
argument 12 is given:

PLOT/COLOR=($12#green#) $1

In another case it might not be appropriate to supply a default string but instead it
would be desirable to issue an instructional error message. The "<" character
indicates an error message text:

$1"<you must supply an argument to this GO tool"

In still other cases there are a range of acceptable arguments but all other
arguments are illegal. The allowable arguments can be specified following "|"
(vertical bar) characters as in this example:

$1"|black|red|<You must specify black or red"

or a default of "black" could be specified together with the options as

$1"black|black|red|"

In the interest of "friendliness" a GO file may want to allow the user to specify a
string other than the string actually needed by the GO tool. For example, in older
Ferret versions red plot line was actually obtained by the PLOT command qualifier
/LINE=2—the string "red" never appeared in this command. To allow a user to
specify "red" and yet have the string "2" substituted, Ferret has provided the
replacement arrow ">". Thus

$1"1|red>2|"

specifies a default string of "1" if no argument is given but substitutes "2" if "red"
is supplied. In a typical GO tool line, defaults, options, substitutions, and an error
message are combined like this:

PLOT/LINE=$1"1|red>2|green>3|blue>4|<must be red, green, or blue"

Note that the error message will be issued only if some color other than "red,"
"green," or "blue" is specified; if no argument is specified then "1" is substituted.

An asterisk (*) can be used to designate that any text whatsoever is acceptable as
an option.

$1"|black|red|<You must specify black or red"

would never generate an error and would use line style 7 (thick black) if an
unrecognized argument string such as "orange" were given.

An asterisk (*) can also be used on the right-hand side of a substitution, in which
case it stands for the entire original argument string. For example

SET VARIABLE/TITLE=$1%*>"*"%

will place double quotation marks around the string in argument 1.

Ch1 Sec5.3.5.

Documentation and checking arguments to GO tools

A final style note to keep in mind when writing GO tools that use arguments:
providing error message feedback and appropriate documentation for the user is
essential. In complex GO tools, all arguments should be checked at the beginning
of the GO tool using the no-op command (has no effect) "QUERY/IGNORE".
Thus the GO tool land.jnl might contain these lines at the beginning:

! check the argument
QUERY/IGNORE $1"1|red|green|blue|<must be red, green, or blue"

Once argument errors have been trapped and reported, the lengthy error text would
not be needed again in the GO tool.

GO tools that use arguments should also be carefully documented. There are
numerous examples provided with Ferret; try, for example, the Unix commands

% Fgo -more fland.jnl
% Fgo -more stick_vectors

or

% Fgo -more squeeze_colors

Ch1 Sec5.3.6. Flow Control in GO tools

There are several Ferret commands and techniques to assist with flow control in
your GO scripts.

GO (subroutines)

The GO command may be used inside of a GO script (tool) to execute another
(nested) GO script. If an error occurs inside of a nested GO script and SET MODE
IGNORE_ERROR has not been issued then the GO script will be interrupted and
control returns to the command line.

REPEAT (looping)

The REPEAT command may be used to execute loops within Ferret. The loop
"counter" may be an index (I,J,K, or L) or a world coordinate (longitude, latitude,
depth, or time). The increment between loop iterations need not correspond to the
spacing of points on a grid. When used in conjunction with the "d" options of SET
REGION, such as SET REGION/DI="-5:-5" the loops may be used to zoom in or
out of a region or to pan a limited-width window of view across a larger region.
See the Advanced Movie-Making section (p. 149) of this manual for further
details.

IF-THEN-ELSE (conditional execution)

An IF-THEN-ELSE syntax can be used to conditionally execute Ferret commands.
It may be used in two styles—single line and multi-line. See the IF command (p.
312) in the Commands Reference section of this manual for further details.

Ch1 Sec5.3.7. Debugging GO tools

As the complexity of Ferret GO scripts increases it becomes more challenging to
locate and correct errors in GO scripts. This is especially true if, as so many GO
scripts do, the scripts are made silent by containing the command CANCEL
MODE VERIFY. In a silent script it can be unclear from where within the script an
error message is originating.

A special VERIFY mode has been provided to assist with locating the source of
these error messages

SET MODE VERIFY:ALWAYS

The ALWAYS argument to this command instructs Ferret to ignore CANCEL
MODE VERIFY commands inside of command files. All of the script commands
that Ferret executes will be echoed when this mode is set. Error messages will
appear with the commands that generated them. To restore normal non-debugging
operations issue CANCEL MODE VERIFY or SET MODE VERIFY (no
argument) interactively from the yes? prompt.

Complex webs of variable definitions (defined with LET or DEFINE VARIABLE)
may also create challenges for debugging scripts. See Debugging Complex
Hierarchies of Expressions (p. 117) for further discussion of this topic.

Ch1 Sec6. SAMPLE DATA SETS

A number of demonstration data sets are included with this distribution. Several of
these data sets are used by the demonstration "GO" files, above. The data sets

should be accessible simply by typing the Ferret command

yes? USE data_set_name for example,
yes? USE coads_climatology

Data set Description

etopo120 relief of the earth's surface at 120-minute resolution

etopo60 relief of the earth's surface at 60-minute resolution

levitus_climatology subset of the Climatological Atlas of the World Oceans by
Sydney Levitus (Note: the updated World Ocean Atlas,
1994, is also available with Ferret)

coads_climatology 12-month climatology derived from 1946–1989 of the
Comprehensive Ocean/Atmosphere Data Set

monthly_navy_winds monthly-averaged Naval Fleet Numerical Oceanography
Center global marine winds (1982–1990)

esku_heat_budget Esbensen-Kushnir 4×5 degree monthly climatology of the
global ocean heat budget (25 variables)

Ch1 Sec7.

UNIX TOOLS

A number of tools are provided with Ferret to assist with Unix-level activities: on-
line help, converting data to Ferret's formats, locating files, etc. They are located in
the Ferret installation area—typically $FER_DIR/bin. See the chapter "Copmuting
Environment", section "Setting up to run Ferret" (p. 221), if the tools are not
available on-line. They are described below.

Faddpath Usage: Faddpath new_path
Faddpath will add a new path name to the default lists of directories that Ferret
searches a) in response to the SET DATA command; b) when looking for grid
definition files; c) when looking for data files.

Fapropos Usage: Fapropos string (i.e. % Fapropos regridding)
Fapropos searches the Ferret User's Guide for all occurrences of the given word or
string. The string is not case sensitive. If the string contains multiple words it must
be enclosed in quotation marks. Fapropos will list all lines of the User's Guide that
contain the word or string and report their line numbers. The line numbers may be
used with Fhelp to enter the User's Guide at the desired location.

Fdata Usage: Fdata data_file_substring
Searches the list of directories contained in the environment variable FER_DATA
to find the data files whose names contain the indicated substring. For example,

 % Fdata coads

locates the data files containing "coads" in their names. (Use this command to
locate NetCDF data sets by giving the string "cdf".)

Fdescr Usage: Fdescr des_name_substring
Searches the list of directories contained in the environment variable FER_DESCR
to find the descriptor files whose names contain the indicated substring. For
example,

 % Fdescr coads

locates the descriptor files containing "coads" in their names. ("Fdescr .des" will
list all accessible descriptors.)

Fenv Usage: Fenv
Prints the values of environment variables used by Ferret

Fgo Usage: Fgo name_substring
Searches the list of directories contained in the environment variable FER_GO to
find the GO command files whose names contain the indicated substring. For
example,

 % Fgo grid

locates the Ferret tools that contain "grid".

Fgrids Usage: Fgrids gridfile_substring
Searches the list of directories contained in the environment variable FER_GRIDS
to find the grid definition files whose names contain the indicated substring. For
example,

 % Fgrids fnoc

locates the grid definition files containing "fnoc" in their names. ("Fgrids
.grd" will list all accessible grid files.)

Fhelp Usage: Fhelp line_number or Fhelp string
Fhelp enters the Ferret User's Guide beginning at the indicated line number or at
the first occurrence of the given string. The string, if used, is not case sensitive.
The Unix "more" command is used to access the User's Guide. The most
commonly used "more" commands are documented under Ftoc.

 Examples: % Fhelp 1136
 % Fhelp "modulo axis"

Fman Usage: Fman
(Not yet implemented.) Enters the Ferret User's Guide as on-line, formatted
hypertext.

Fpalette Usage: Fpalette name_substring
Searches the list of directories contained in the environment variable

FER_PALETTE to find the palette files whose names contain the indicated
substring. For example,

 % Fpalette blue

locates the palette files containing "blue" in their names.

Fpurge Usage: Fpurge filename_template
Fpurge is a support routine to manage multiple versions of files created by
Ferret—particularly journal files and graphic metafiles. Fpurge will remove all
versions of a file except the current version. For example, "Fpurge ferret.jnl" will
eliminate all past versions of ferret.jnl in the current directory.

Fsort Usage: Fsort filename_template
Fsort is a support routine for sorting file versions. Fsort reorders the incorrect
ordering of emacs-style version numbers assigned by the Unix "ls" utility. For
example, when sorting, ls will place filename.~19~ before filename.~2~. "Fsort
filename*" will take care of this problem. Fsort may be used in Unix pipes.

Ftoc Usage: Ftoc
Ftoc enters the table of contents of the Ferret User's Guide using the Unix "more"
command. Within "more" the following are the most commonly used commands:

? interactive help for "more"

q exit (quit)

space advance to next screen

return advance to next line

b back one screen

/string locate the next occurrence of "string" (Note: the string is case
sensitive)

Ch1 Sec8. HELP

Ch1 Sec8.1.

Unix on-line help

On Unix systems interactive Ferret help is available from the command line. If
multiple windows are not available on your system the ^Z key can be used to
suspend the current Ferret session and access the help; the Unix "fg" command
resumes the suspended session.

Several Unix commands provide assistance with rapidly locating information in the
Ferret User's Guide. The entire Ferret User's Guide is available on-line as
document $FER_DIR/doc/ferret_users_guide.txt. A printable version is also
available in PostScript: $FER_DIR/doc/ferret_users_guide.ps.

These commands are available to access the Ferret User's Guide:

Ftoc browse the table of contents of the User's Guide

Fapropos locate words or character strings in the User's Guide

Fhelp enter and browse the User's Guide

Fman enter and browse the User's Guide as formatted hypertext (not yet
implemented)

Normally Ftoc or Fapropos is used first to locate the desired information in the
User's Guide. Then Fhelp is used to enter the User's Guide at the selected location.

Ch1 Sec8.2. Examples and demonstrations

As discussed earlier in this chapter (Getting Started, GO files), the demonstrations
that come with the Ferret distribution are a source of help. See the introductory
chapter, section "Demonstration files," (p. 15) for a list of demonstrations, or look
in $FER_DIR/examples; you may find something that addresses your problem.

Ch1 Sec8.3. Help from within Ferret

Typing "help" while running Ferret will give you information on using the Unix
tool Fhelp to access the User's Guide.

The Ferret command SHOW COMMANDS will list all Ferret commands; SHOW
COMMAND "command" will display all qualifiers for the specified command.

The Ferret command SHOW FUNCTIONS lists all Ferret functions and their
arguemnts. SHOW FUNCTION *string* will show all functions containing the
string "string". SHOW FUNCTIONS EXTERNAL shows the names and
arguments of external functions (see External Functions Chapter, page 253)

The Ferret command SHOW TRANSFORMS lists all Ferret transforms, including
variable transforms and regridding transforms.

If you want to get details on a script, type 'GO/HELP scriptname" to see the
documentation at the start of the script. For example:

GO/HELP land

When writing scripts, include documentation listing the purpose of the script and
its arguments in the first few lines of the script. Then this feature will let you and
others who may use the script get instant information about it.

Ch1 Sec8.4. Web-based information

From the Ferret web page, at http://www.ferret.noaa.gov/Ferret, see these sections:

1. Ferret support policy outlines the support available to users and sources of
information

2. FAQ section discusses many topics where questions often arise.

3. Email archives, which are searchable and contain questions and solutions from
the Ferret users group.

4. Documentation section, including release notes, this manual which is updated
regularly on the web, and on-line information on demonstration scripts, data
formats, and the Plot Plus graphics used by Ferret.

http://www.ferret.noaa.gov/Ferret
http://www.ferret.noaa.gov/Ferret/ferret_support.html
http://www.ferret.noaa.gov/Ferret/FAQ/ferret_FAQ.html
http://www.ferret.noaa.gov/Ferret/Mail_Archives/ferret_mail_archives.html
http://www.ferret.noaa.gov/Ferret/Documentation/ferret_documentation.html

Chapter 2: DATA SET BASICS

Ch2 Sec1. OVERVIEW

Ferret accepts input data from both ASCII and binary files and recognizes two standardized,
self-describing data formats—NetCDF, and TMAP. Network Common Data Format
(NetCDF) is the suggested method of data storage.

SET DATA_SET or just SET DATA specifies a data set for access. ASCII and binary files
can be read using SET DATA/EZ (also known as "FILE"). To unambiguously specify the
format of a data set, include the extension .cdf or .des in its name, or use the qualifier
/FORMAT=CDF.

To examine what each data set consists of (variables, grids, etc.) after specifying them with
SET DATA, use SHOW DATA. This command displays the variables in the data set and
over what geographical and time ranges they are defined.

Here is an example of Ferret's output:

 yes? SET DATA coads_climatology
 yes? SHOW DATA
 currently SET data sets:
 1> /home/e1/tmap/fer_dsets/descr/coads_climatology.des (default)
name title I J K L
SST SEA SURFACE TEMPERATURE 1:180 1:90 1:1 1:12
AIRT AIR TEMPERATURE 1:180 1:90 1:1 1:12
SPEH SPECIFIC HUMIDITY 1:180 1:90 1:1 1:12
WSPD WIND SPEED 1:180 1:90 1:1 1:12
UWND ZONAL WIND 1:180 1:90 1:1 1:12
VWND MERIDIONAL WIND 1:180 1:90 1:1 1:12
SLP SEA LEVEL PRESSURE 1:180 1:90 1:1 1:12

If multiple data sets have been requested in a single Ferret session, the last requested will be
the default data set. To specify other data sets, use the name of the data set or the number of
the set as given by the SHOW DATA statement. For example:

yes? LIST/D=2 temp

will list the data for the variable "temp" in data set number 2 as displayed by SHOW
DATA/BRIEF, while

yes? LIST temp[D=levitus_climatology] - temp[D=coads_climatology]

will list the differences between the variable "temp" in data set "levitus_climatology" and
data set "coads_climatology."

If a filename begins with a number, Ferret does not recoginze it, but the file may be
specified using its unix pathname, e.g.

yes? use "./123"

or

yes? file/var=a "./45N_180W.dat"

Ch2 Sec2. NETCDF DATA

The Network Common Data Format (NetCDF) is an interface to a library of data access
routines for storing and retrieving scientific data. NetCDF allows the creation of data sets
which are self-describing and platform-independent. NetCDF was created under contract
with the Division of Atmospheric Sciences of the National Scientific Foundation and is
available from the Unidata Program Center in Boulder, Colorado (unidata.ucar.edu).

See the chapter "Converting Data to NetCDF" (p. 229), for a complete description of how to
create NetCDF data sets or how to convert existing data sets into NetCDF.

To output a variable in NetCDF, simply use:

yes? LIST/FORMAT=CDF variable_name

LIST/FORMAT=CDF (alias SAVE) can also be used with abstract variables:

yes? SAVE/FILE=example.cdf/I=1:100 sin(I/100)

This will create a file named example.cdf.

The current region and data sets determine the variable names in the saved file and the
range over which they are saved. Saved data can then be accessed as follows:

yes? USE example

(USE is an alias for SET DATA/FORMAT=CDF)

If a filename is not specified, Ferret will generate one. (See command SET LIST/FILE in
the Commands Reference section, p. 346). An example of converting TMAP-formatted data
to NetCDF goes as follows:

yes? SET DATA coads_climatology
yes? SAVE/L=1 sst,airt,uwnd,vwnd

These commands will save sst, airt, uwnd, and vwnd at the first time step over their entire
regions to a NetCDF file named by Ferret.

One advantage to using NetCDF is that users on a different system (i.e., VMS instead of
Unix) with different software (i.e., with an analysis tool other than Ferret) can share data
easily without substantial conversion work. NetCDF files are self-describing; with a simple
command the size, shape and description of all variables, grids and axes can be seen.

With Ferret version 5.1 , the internal functioning of netCDF reads has been changed when
"strides" are involved. Suppose that CDFVAR represent a variable from NetCDF file. In
version 5.0 and earlier the command PLOT CDFVAR[L=1:1000:10] would have read the
entire array of 1000 points from the file; Ferret's internal logic would have subsampled
every 10th point from the resulting array in a manner that was consistent for NetCDF
variables, ASCII variables, user defined variables, etc. In V5.1 strides applied to netCDF
variables are given special treatment -- subsampling is done by the netCDF library. The
primary benefit of this is to make network access to remote data sets via DODS more
efficient. Beginning with Ferret v5.4, strides can be applied across the "branch point" of a
modulo variable without loss of efficiency for netCDF data set, as long as the stride is an
integer fraction of the modulo length times the number of points on the axis. A remote
satellite image of size, say, 1000x1000 points x 8 bit depth (8 megabytes) can efficiently be
previewed using

SHADE DODS_VAR[i=1:1000:10,j=1:1000:10]

If a grid or axis from a netCDF file is used in the definition of a LET-defined variable (e.g.
LET my_X = X[g=sst[D=coads_climatology]]) that variable definition will be invalidated
when the data set is canceled (CANCEL DATA coads_climtology, in the preceding
example). There is a single exception to this behavior: netCDF files such as
climtological_axes.cdf, which define grids or axes that are not actually used by any
variables. These grids and axes will remain defined even after the data set, itself, has been
canceled. They may be deleted with explicit use of CANCEL GRID or CANCEL AXIS.

Ch2 Sec2.1. Multi-file NetCDF data sets

Ferret supports collections of NetCDF files that are regarded as a single NetCDF data set.
Such data sets are referred to as "MC" (multi CDF) data sets. They are particularly useful
to manage the outputs of numerical models. MC data sets use a descriptor file, in the style
of TMAP-formatted data sets. The data set is referred to inside Ferret by the name of this
descriptor file.

A collection of NetCDF files is suitable to form a multi-file data set if

1) The files are connected through their time axis—each file represents one or more time
snapshots of the variables it contains.

2) All non-time-dependent variables in the data set must be contained in the first file of the
data set (or those variables will not appear in the merged, MC, data set).

3) (note) Previous to version 5.2, each file is self-documenting with respect to the time
axis of the variables—even if the time axis represents only a single point. (All of the time
axes must be identically encoded with respect to units and date of the time origin.) In
version 5.3 and higher these checks are not performed. This means that the MC descriptor
mechanism can be used to associate into time series groups of files that are not internally
self-documenting with respect to time. See Chapter 10, section 4 (p. 249)

A typical MC descriptor file may be found in the chapter "Converting to NetCDF", in the
section "Creating a multi-NetCDF data set." (p. 249)

Ch2 Sec2.2. Non-standard NetCDF data sets

As discussed in the Chapter, "Converting Data to NetCDF," (p. 229) Ferret expects netCDF
files to adhere to the COARDS conventions (http://www.ferret.noaa.gov/noaa_coop/
coop_cdf_profile.html). If the files do not adhere to the COARDS conventions, Ferret will
still attempt to access them. Often, the user can use Ferret controls for regridding,
reshaping, and otherwise transforming data to recover the intended file contents.

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html
http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html

Here are a few common ways in which NetCDF files may deviate from the COARDS
standard and how one may cope with those situations in Ferret.

● Files with disordered coordinates

In the COARDS conventions an axis (a.k.a. "coordinate variable") must have monotonically-
increasing coordinate values. If the coordinates are disordered or repeating in a netCDF file,
then Ferret will present the coordinates to the user (in SHOW DATA) as a dependent
variable, whose name is the axis name, and it will substitute an axis of the index values 1, 2,
3, ... Note that Ferret will apply this same behavior when files have long irregular axis
definitions that exceed Ferret's axis memory capacity.

● Files with reverse-ordered axes

If the coordinates of an axis are monotonically decreasing, instead of increasing, Ferret will
transparently reverse both the axis coordinates and the dependent variables that are defined
upon that axis. Note that if Ferret writes a reverse-ordered variable to a new netCDF file
(with the SAVE command), the coordinates and data in the output file will be in
monotonically increasing coordinate order—reversed from the input file.

If the values of a dependent variable are reversed, but there is no associated coordinate axis
then use attach a minus sign to the corresponding axis orientation in the USE/ORDER=
 qualifier to designate that the variable(s) should be reversed along the corresponding axis.

● Files with "invalid" variable names

The COARDS standard specifies that variable names should begin with a letter and be
composed of letters, digits, and underscores. In files where the variable names contain other
letters, references to those variable names in Ferret must be enclosed in single quotes.

● Files with permuted axis ordering

The COARDS standard specifies that if any or all of the dimensions of a variable have the
interpretations of "date or time" (a.k.a. "T"), "height or depth" (a.k.a. "Z"), "latitude" (a.k.a.
"Y"), or "longitude" (a.k.a. "X") then those dimensions should appear in the relative order
T, then Z, then Y, then X in the CDL definition corresponding to the file. In files where the
axis ordering has been permuted the command qualifiers USE/ORDER= (Command
Reference, p. 339) allow the user to inform Ferret of the correct permutation of
coordinates. Note that if Ferret writes a permuted variable to a new netCDF file (with the
SAVE command), the coordinates and data in the output file will be in standard X-Y-Z-T
ordering (as indicated in the user’s /ORDER specification)—permuted from the original file

ordering. See the Command Reference (p. 281) for a complete description of the ORDER
qualifier.

● Files with more than four dimensions

The COARDS standard specifies that a NetCDF file may be created with more than four
dimensions. However the Ferret framework allows just four dimensions at this time.

Ch2 Sec2.3. NetCDF and non-standard calendars

The NetCDF conventions document discusses and defines usage for different calendar axes.
 hese conventions for calendars are implemented in Ferret version 5.3 See:

 http://www.cgd.ucar.edu/cms/eaton/netcdf/merge_current.html#cal (However the use of
calendars beyond the defined Gregorian, Julian, noleap, and 360 day calendar are not
implemented at this time.)

These calendars are compatible with the Udunits standard which has slightly different
naming conventions.

http://www.unidata.ucar.edu/packages/udunits/udunits.dat

The NetCDF conventions recommend that the calendar be specified by the attribute
 time:calendar which is assigned to the time coordinate variable when there is a non-
Gregorian calendar associated with a data set, i.e.

 time:calendar=noleap

Ferret reads this attribute when it is present in a NetCDF file and assigns the appropriate
calendar identifer to the variable. When a variable has a non-Gregorian calendar, the
attribute is written to a NetCDF file when the variable is output to a NetCDF file.

Ch2 Sec3. TMAP-FORMATTED DATA

As of Ferret version 2.30, NetCDF is the suggested format for data storage (see the chapter,
"Converting to NetCDF," p. 229). This section describing TMAP information is included

http://www.cgd.ucar.edu/cms/eaton/netcdf/merge_current.html#cal
http://www.unidata.ucar.edu/packages/udunits/udunits.dat

only for users who already work with data in TMAP format.

To access TMAP-formatted data sets use

SET DATA_SET TMAP_set1, TMAP_set2, ...

TMAP_setn must be the name of a descriptor file for a data set that is in TMAP "GT" (grids-
at-timesteps) or "TS" (time series) format. ("Ferret" format and "TMAP" format are
synonyms.)

If the directory portion of the filename is omitted the environment variable FER_DESCR
will be used to provide a list of directories to search. The order of directories in
FER_DESCR determines the order of directory searches. If the extension is omitted a
default of ".des" will be assumed (if the filename has more than one period, the extension
must be given explicitly).

Descriptors

For every TMAP-formatted data set there is a descriptor file containing summary
information about the contents of the data set. This includes variable names, units, grids,
and coordinates. When the command SET DATA_SET is given to Ferret pointing to a GT-
formatted or TS-formatted data set, it is the name of the descriptor file that must be
specified.

Ch2 Sec4. BINARY DATA

Ferret can read binary data files that are formatted with and without FORTRAN record
length headers (binary files without FORTRAN record length formatting are also known as
"stream" files).

Ch2 Sec4.1. FORTRAN-structured binary files

Files containing record length information are created by FORTRAN programs using the
 ACCESS="SEQUENTIAL" (the FORTRAN default) mode of file creation and also by
Ferret using LIST/FORMAT=unf. Files that contain FORTRAN record length headers must
have all data aligned on a 4-byte boundary. Suppose "rrrr" represents 4 bytes of record

length information and "dddd" represents a 4-byte data value. Then FORTRAN-structured
files are organized in one of the following two ways:

Ch2 Sec4.1.1. Records of uniform length

A FORTRAN-structured file with records of uniform length (3 single-precision floating
point data values per record in this figure) looks like this:

rrrr dddd dddd dddd rrrr ...

FORTRAN code that creates a data file of this type might look something like this
(sequential access is the default and need not be specified in the OPEN statement):

REAL VARI(10), VAR2(10), VAR3(10)
...
OPEN(UNIT=20,FORMAT='UNFORMATTED',ACCESS='SEQUENTIAL',FILE='MYFILE.DAT')
...
DO 10 I=1,10
 WRITE (20) VAR1(I), VAR2(I), VAR3(I)
10 CONTINUE
....

To access data from this file, use

yes? SET DATA/EZ/FORMAT=UNF/VAR=var1,var2,var3/COL=3 myfile.dat or,
yes? FILE/FORMAT=UNF/VAR=var1,var2,var3/COLUMNS=3 myfile.dat

This is very similar to accessing ASCII data with the addition of the /FORMAT=unf
qualifier. The /COLUMNS= qualifier tells Ferret the number of data values per record.
Although optional in the above example, this qualifier is required if the number of data
values per record is greater than the number of variables being read (examples follow in
section "ASCII Data").

Ch2 Sec4.1.2. Records of non-uniform length

A FORTRAN-structured file with variable-length records might look like this:

rrrr dddd dddd rrrr

rrrr dddd rrrr
rrrr dddd dddd dddd dddd rrrr
etc.

With care, it is possible to read a data file containing variable-length records which was
created using the simplest unformatted FORTRAN OPEN statement and a single WRITE
statement for each variable. Use /FORMAT=stream to read such files. Note that sequential
access is the FORTRAN default and does not need to be specified in the OPEN statement:

REAL VAR1(1000), VAR2(500)
...
OPEN (UNIT=20, FORMAT="UNFORMATTED", FILE="MYFILE.DAT")
...
WRITE (20) VAR1
WRITE (20) VAR2
....

Use the qualifier /SKIP to skip past the record length information (/SKIP arguments are in
units of words), and define a grid which will not read past the data values. The
 /COLUMNS= qualifier can be used when reading multiple variables to specify the number
of words separating the start of each variable:

yes? DEFINE AXIS/X=1:500:1 xaxis
yes? DEFINE GRID/X=XAXIS mygrid
yes? FILE/FORMAT=stream/SKIP=1003/GRID=mygrid/VAR=var2 myfile.dat

The argument 1003 is the sum of the 1000 data words in record 1, plus 2 words of record
length information surrounding the data values in record 1 (variable var1), plus 1 word of
record information preceding the data in record 2.

Ch2 Sec4.1.3. Fortran binary files, variables on different grids.

Some FORTRAN-structured files have multiple variables per record which do not share a
common grid. An example would be one year of a global monthly field stored as twelve
records like this:

rrrr year month field(360x180) rrrr

The data file size is (1+1+1+360*180+1)*12*4 = 3110592 bytes. Such a file cannot be read
with the /FORMAT=unf qualifier but can be read with the /FORMAT=stream qualifier
described in the next section. By including the /SWAP qualifier, this technique can be used

to read files created on a machine with a different byte ordering.

The following commands will read this file and assign the data to the appropriate grid:

yes? ! Create an X axis for an entire record.
yes? DEFINE AXIS/X=1:`3+360*180+1`:1 binary_x
yes? DEFINE AXIS/T=1:12:1 binary_t
yes? DEFINE GRID/X=binary_x/T=binary_t binary_g

yes? ! Read in everything.
yes? FILE/FORMAT=stream/G=binary_g/VAR=val binary_file

! Create the grid for the data field.
yes? DEFINE AXIS/MODULO/X=0.5:359.5:1 1deg_x
yes? DEFINE AXIS/Y=-89.5:89.5:1 1deg_y
yes? DEFINE AXIS/T=15-jan-1999:15-dec-1999:1/UNITS=month month_1999_t
yes? DEFINE GRID/X=1deg_x/Y=1deg_y/T=month_1999_t 1deg_1999_g

yes? ! Create a variable that uses this grid.
yes? LET dummy = x[GX=R_1deg_1999_g] + y[GY=R_1deg_1999_g] +
 t[GT=R_1deg_1999_g]

yes? ! Reshape the data portion of val onto the data grid.
yes? LET field = RESHAPE(val[i=4:`3+360*180`],dummy)

Ch2 Sec4.2. Stream binary files

Files without embedded record length information are created by FORTRAN programs
using ACCESS="DIRECT" in OPEN statements and by C programs using the C studio
library. These files can contain a mix of integer and real numbers. The following types can
be read from an unstructured file:

FORTRAN C Size in bytes

INTEGER*1 char 1

INTEGER*2 short 2

INTEGER*4 int 4

REAL*4 float 4

REAL*8 double 8

Ch2 Sec4.2.1. Simple stream files

Suppose "dddd" represents a 4-byte data value. Then a stream (or "direct access") binary
file of FORTRAN REAL*4 or C floats is:

dddd dddd dddd dddd dddd dddd ...

The structure of the records is implied by the program accessing the data. FORTRAN code
which generates a direct access binary file might look like this:

REAL*4 MYVAR(10,5)
...
C Use RECL=40 for machines that specify in bytes

OPEN(UNIT=20, FILE="myfile.dat", ACCESS="DIRECT", RECL=10)
...
DO 100 j = 1, 5
100 WRITE (20,REC=j) (MYVAR(i,j),i=1,10)
....

Use the following Ferret commands to read variable "myvar" from this file:

yes? DEFINE AXIS/X=1:10:1 x10
yes? DEFINE AXIS/Y=1:5:1 y5
yes? DEFINE GRID/X=x10/Y=y5 g10x5
yes? FILE/VAR=MYVAR/GRID=g10x5/FORMAT=stream myfile.dat

If the file consisted of a set of FORTRAN REAL*8 or C doubles, then the data would look
like:

dddddddd dddddddd dddddddd ...

and the following Ferret commands would read the data into "myvar":

yes? DEFINE AXIS/X=1:10:1 x10

yes? DEFINE AXIS/Y=1:5:1 y5

yes? DEFINE GRID/X=x10/Y=y5 g10x5

yes? FILE/VAR=MYVAR/GRID=g10x5/FORMAT=stream/type=r8 myfile.dat

Note the addition of the "type" qualifier. See the FILE command (p. 309) for more details.

Since Ferret represents all variables as REAL*4, some precision is lost when reading in
REAL*8 or INTEGER*4 values. Also, some REAL*8 numbers cannot be represented as
REAL*4 numbers; the internal Ferret value of such a number is system dependent.

Ch2 Sec4.2.2. Mixed stream files

Ferret can read binary files that contain a mix of numbers of different type. However, a
given Ferret variable can only be one type. Say you have a file containing a mix of REAL*8
and REAL*4 numbers:

dddddddd dddd dddddddd dddd dddddddd ...

The following would successfully read the file:

yes? FILE/VAR=MYDOUBLE,MYFLOAT/GRID=somegrid/FORMAT=stream/type=r8,r4
 myfile.dat

while:

yes? FILE/VAR=MYDOUBLE/GRID=someothergrid/FORMAT=stream/type=r8,r4
 myfile.dat

would fail.

Ch2 Sec4.2.3. Byte-swapped stream files

Stream files with byte-swapped numbers can be read with the /SWAP qualifier. Note that

the /ORDER and /SKIP qualifiers are also available (see chapter "Data Set Basics", section
"Reading ASCII files," p. 41, for more details on /ORDER and /SKIP).

Ch2 Sec5. ASCII DATA

To access ASCII data file sets use

yes? SET DATA/EZ ASCII_file_name or equivalently
yes? FILE ASCII_file_name

The following are qualifiers to SET DATA/EZ or FILE:

Qualifier Description

/TITLE associates a title with the data set

/GRID indicates multi-dimensional data and units

/COLUMNS tells how many data values are in each record

/FORMAT specifies the format of the file

/SKIP skips initial records of the file

/ORDER specifies order of axes (which varies fastest)

Use command SET VARIABLE to individually customize the variables.

Ch2 Sec5.1. Reading ASCII files

Below are several examples of reading ASCII data properly. (Uniform record length,
FORTRAN-structured binary data are read similarly with the addition of the qualifier

/FORMAT= "unf". Seethe chapter on "Data Set Basics", section "Binary Data," p. 36, for
other binary types). First, we look briefly at the relationship between Ferret and standard
matrix notation.

Linear algebra uses established conventions in matrix notation. In a matrix A(i,j), the first
index denotes a (horizontal) row and the second denotes a (vertical) column.

A11 A12 A13 ... A1n

A21 A22 A23 ... A2n Matrix A(i,j)

...

Am1 Am2 Am3 ... Amn

X-Y graphs follow established conventions as well, which are that X is the horizontal axis
(and in a geographical context, the longitude axis) and increases to the right, and Y is the
vertical axis (latitude) and increases upward (Ferret provides the /DEPTH qualifier to
explicitly designate axes where the vertical axis convention is reversed).

In Ferret, the first index of a matrix, i, is associated with the first index of an (x,y) pair, x.
Likewise, j corresponds to y. Element Am2, for example, corresponds graphically to x=m
 and y=2.

By default, Ferret stores data in the same manner as FORTRAN—the first index varies
fastest. Use the qualifier /ORDER to alter this behavior. The following examples
demonstrate how Ferret handles matrices.

Example 1—1 variable, 1 dimension

1a) Consider a data set containing the height of a plant at regular time intervals, listed in a
single column:

2.3
3.1
4.5
5.6
. . .

To access, name, and plot this variable properly, use the commands

yes? FILE/VAR=height plant.dat
yes? PLOT height

1b) Now consider the same data, except listed in four columns:

2.3 3.1 4.5 5.6
5.7 5.9 6.1 7.2
. . .

Because there are more values per record (4) than variables (1), use:

yes? FILE/VAR=height/COLUMNS=4 plant4.dat
yes? PLOT height

Example 2—1 variable, 1 dimension, with a large number of data points.

The simple FILE command:

yes? FILE/VAR=height plant.dat

uses an abstract axis of fixed length, 20480 points. If your data is larger than that, you can
read the data by defining an axis of appropriate length. Set the length to a number equal to
or larger than the dimension of your data. The plot command will plot the actual number of
points in the file.

yes? DEFINE AXIS/X/X=1:50000:1 longax

yes? DEFINE GRID/X=longax biggrid

yes? FILE/VAR=height/GRID=biggrid plant.dat
yes? PLOT height

Example 3—2 variables, 1 dimension

3a) Consider a data set containing the height of a plant and the amount of water given to the
plant, measured at regular time intervals:

2.3 20.4
3.1 31.2
4.5 15.7
5.6 17.3
. . .

To read and plot this data use

yes? FILE/VAR="height,water" plant_wat.dat
yes? PLOT height,water

3b) The number of columns need be specified only if the number of columns exceeds the
number of variables. If the data are in six columns

2.3 20.4 3.1 31.2 4.5 15.7
5.6 17.3 ...

use

yes? FILE/VAR="height,water"/COLUMNS=6 plant_wat6.dat
yes? PLOT height,water

Example 4—1 variable, 2 dimensions

4a) Consider a different situation: a greenhouse with three rows of four plants and a file
with a single column of data representing the height of each plant at a single time
(successive values represent plants in a row of the greenhouse):

3.1
2.6
5.4
4.6
3.5
6.1
. . .

If we want to produce a contour plot of height as a function of position in the greenhouse,
axes will have to be defined:

yes? DEFINE AXIS/X=1:4:1 xplants
yes? DEFINE AXIS/Y=1:3:1 yplants
yes? DEFINE GRID/X=xplants/Y=yplants gplants
yes? FILE/VAR=height/GRID=gplants greenhouse_plants.dat
yes? CONTOUR height

When reading data the first index, x, varies fastest. Schematically, the data will be assigned
as follows:

 x=1 x=2 x=3 x=4
y=1 3.1 2.6 5.4 4.6
y=2 3.5 6.1 . . .
y=3 . . .

4b) If the file in the above example has, instead, 4 values per record:

3.1 2.6 5.4 4.6
3.5 6.1 . . .

then add /COLUMNS=4 to the FILE command:

yes? FILE/VAR=height/COLUMNS=4/GRID=gplants greenhouse_plants.dat

Example 5—2 variables, 2 dimensions

Like Example 3, consider a greenhouse with three rows of four plants each and a data set
with the height of each plant and the length of its longest leaf:

3.1 0.54
2.6 0.37
5.4 0.66
4.6 0.71
3.5 0.14
6.1 0.95
. .
. .

Again, axes and a grid must be defined:

yes? DEFINE AXIS/X=1:4:1 xht_leaf
yes? DEFINE AXIS/Y=1:3:1 Yht_leaf
yes? DEFINE GRID/X=xht_leaf/Y=yht_leaf ght_leaf
yes? FILE/VAR="height,leaf"/GRID=ght_leaf greenhouse_ht_lf.dat
yes? SHADE height
yes? CONTOUR/OVER leaf

The above commands create a color-shaded plot of height in the greenhouse, and overlay a
contour plot of leaf length. Schematically, the data will be assigned as follows:

 x=1 x=2 x=3 x=4
 ht , lf ht , lf
y=1 3.1, 0.54 2.6, 0.37 5.4, 0.66 4.6, 0.71
y=2 3.5, 0.14 6.1, 0.95 . . .
y=3 . . .

Example 6—2 variables, 3 dimensions (time series)

Consider the same greenhouse with height and leaf length data taken at twelve different
times. The following commands will create a three-dimensional grid and a plot of the height
and leaf length versus time for a specific plant.

yes? DEFINE AXIS/X=1:4:1 xplnt_tm
yes? DEFINE AXIS/Y=1:3:1 yplnt_tm
yes? DEFINE AXIS/T=1:12:1 tplnt_tm
yes? DEFINE GRID/X=xplnt_tm/Y=yplnt_tm/T=tplnt_tm gplant2
yes? FILE/VAR="height,leaf"/GRID=gplant2 green_time.dat
yes? PLOT/X=3/Y=2 height, leaf

Example 7—1 variable, 3 dimensions, permuted order (vertical profile)

Consider a collection of oceanographic measurements made to a depth of 1000 meters.
Suppose that the data file contains only a single variable, salt. Each record contains a
vertical profile (11 values) of a particular x,y (long,lat) position. Supposing that successive
records are successive longitudes, the data file would look as follows (assume the
equivalencies are not in the file):

 z=0 z=10 z=20 . . .

x=30W,y=5S 35.89 35.90 35.93 35.97 36.02 36.05 35.96 35.40 35.13 34.89
34.72

x=29W,y=5S 35.89 35.91 35.94 35.97 36.01 36.04 35.94 35.39 35.13 34.90
34.72

 . . .

Use the qualifier /DEPTH= when defining the Z axis to indicate positive downward, and
/ORDER when setting the data set to properly read in the permuted data:

yes? DEFINE AXIS/X=30W:25W:1/UNIT=degrees salx
yes? DEFINE AXIS/Y=5S:5N:1/UNIT=degrees saly
yes? DEFINE AXIS/Z=0:1000:100/UNIT=meters/DEPTH salz

yes? DEFINE GRID/X=salx/Y=saly/Z=salz salgrid
yes? FILE/ORDER=zxy/GRID=salgrid/VAR=sal/COL=11 sal.dat

Ch2 Sec5.2. Reading "DELIMITED" data files

SET DATA/FORMAT=DELIMITED[/DELIMITERS=][/TYPE=][/VAR=] filename

For "delimited" files, such as output of spreadsheets, SET DATA/FORMAT=DELIMITED
initializes files of mixed numerical, string, and date fields. If the data types are not specified
the file is analyzed automatically to determine data types.

The alias COLUMNS stands for "SET DATA/FORMAT=DELIMITED". (See p.341 for the
full syntax.)

Example 1: Strings, latitudes, longitudes, and numeric data.

This file is delimited by commas. Some entries are null; they are indicated by two commas
with no space between. File delimited_read_1.dat contains:

 col1, col2 col3 col4 col5 col6 col7
 one ,, 1.1, 24S, 130E ,, 1e1
 two ,, 2.2, 24N, 130W, 2S
 three ,, 3.3, 24, 130, 3N, 3e-2

 five ,, 4.4, -24, -130, 91, -4e2
 extra line

If there is no /TYPE qualifier, the data type is automatically determined. If all entries in the
column match a data type they are assigned that type. First let's try the file as is, using
automatic analysis. Record 1 contains 5 column headings (text) so V1 through V5 are
analyzed as text variables.

yes? FILE/FORMAT=delim delimited_read_1.dat
yes? LIST v1,v2,v3,v4,v5,v6,v7,v8
 DATA SET: ./delimited_read_1.dat
 X: 0.5 to 7.5
Column 1: V1
Column 2: V2

Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
Column 7: V7
 V1 V2 V3 V4 V5 V6 V7
1 / 1: "col1" "col2" "col3" "col4" "col5" " "
2 / 2: "one" " " "1.1" "24S" "130E" " " 10.0
3 / 3: "two" " " "2.2" "24N" "130W" "2S"
4 / 4: "three" " " "3.3" "24" "130" "3N" 0.0
5 / 5: " " " " " " " " " " " "
6 / 6: "five" " " "4.4" "-24" "-130" "91" -400.0
7 / 7: "extra line" " " " " " " " " " "

Now skip the first record to do a better "analysis" of the file fields. Explicitly name the
variables. Note that v3 is correctly analyzed as numeric, A4 is latitude and A5 longitude.
A6 is analyzed as string data, because the value 91 in record 5 does not fall in the range for
latitudes, and records 2 and 3 contain mixed numbers and letters.

yes? FILE/FORMAT=DELIM/SKIP=1/VAR="a1,a2,a3,a4,a5,a6,a7,a8,a9"
delimited_read_ 1.dat
yes? LIST a1,a2,a3,a4,a5,a6,a7
 DATA SET: ./delimited_read_1.dat
 X: 0.5 to 6.5
Column 1: A1
Column 2: A2 is A2 (all values missing)
Column 3: A3
Column 4: A4 is A4 (degrees_north)(Latitude)
Column 5: A5 is A5 (degrees_east)(Longitude)
Column 6: A6
Column 7: A7
 A1 A2 A3 A4 A5 A6 A7
1 / 1: "one" ... 1.100 -24.00 130.0 " " 10.0
2 / 2: "two" ... 2.200 24.00 -130.0 "2S"
3 / 3: "three" ... 3.300 24.00 130.0 "3N" 0.0
4 / 4: " " " "
5 / 5: "five" ... 4.400 -24.00 -130.0 "91" -400.0
6 / 6: "extra line"... " "

Now use the /TYPE qualifier to specify that all columns be treated as numeric.

yes? FILE/FORMAT=delim/SKIP=1/TYPE=numeric delimited_read_1.dat
yes? LIST v1,v2,v3,v4,v5,v6,v7,v8
 DATA SET: ./delimited_read_1.dat
 X: 0.5 to 6.5
Column 1: V1
Column 2: V2

Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
Column 7: V7
 V1 V2 V3 V4 V5 V6 V7
1 / 1:...... 1.100 10.0
2 / 2:...... 2.200
3 / 3:...... 3.300 24.00 130.0 0.0
4 / 4:......
5 / 5:...... 4.400 -24.00 -130.0 91.00 -400.0
6 / 6:......

Here is how to read only the first line of the file. If the variables are not specified, 7
variables are generated because auto-analysis of file doesn't stop at the first record. Use the
command COLUMNS, the alias for FILE/FORMAT=delimited

yes? DEFINE AXIS/X=1:1:1 x1yes? DEFINE GRID/X=x1 g1
yes? COLUMNS/GRID=g1 delimited_read_1.dat
LIST v1,v2,v3,v4,v5,v6,v7
 DATA SET: ./delimited_read_1.dat
 X: 1
Column 1: V1
Column 2: V2
Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
Column 7: V7
 V1 V2 V3 V4 V5 V6 V7
I / *: "col1" "col2" "col3" "col4" "col5" " " ... " "

Define the variables to read.

yes? COLUMNS/GRID=g1/VAR="c1,c2,c3,c4,c5" delimited_read_1.dat
yes? LIST c1,c2,c3,c4,c5
 DATA SET: ./delimited_read_1.dat
 X: 1
Column 1: C1
Column 2: C2
Column 3: C3
Column 4: C4
Column 5: C5
 C1 C2 C3 C4 C5
I / *: "col1" "col2" "col3" "col4" "col5"

Example 2: File using blank as a delimiter.

Ferret recognizes the file as containing date and time variables, further explored in Example
3 below. Here is the file delimited_read_2.dat. There is a record of many blanks in record
2.

 1981/12/03 12:35:00

 1895/2/6 13:45:05

Read the file using /DELIMITER=" "

yes? FILE/FORM=delimited/DELIMITER=" " delimited_read_2.dat
yes? LIST v1,v2
 DATA SET: ./delimited_read_2.dat
 X: 0.5 to 3.5
Column 1: V1 is V1 (days)(Julian days since 1-Jan-1900)
Column 2: V2 is V2 (hours)(Time of day)
 V1 V2
1 / 1: 37965. 12.58
2 / 2:
3 / 3: 39051. 13.75

Example 3: dates and times

Note that record 3 has syntax errors in the first 4 fields. Here is delimited_read_3.dat:

 12/1/99, 12:00, 12/1/99, 1999-03-01, 12:00, 13:45:36.5
 12/2/99, 01:00:13.5, 12/2/99, 1999-03-02, 01:00:13.5, 14:45:36.5
 12/3/99x, 2:00x, 12/3/99, 1999-03-03, 2:00, 15:45
 12/4/99, 03:00, 12/4/99, 1999-03-04, 03:00, 16:45:36.5

Read with auto-analysis. The records with syntax errors cause variables 1 and 2 to be read
as string variables.

yes? COLUMNS delimited_read_3.dat
yes? LIST v1,v2,v3,v4,v5,v6
 DATA SET: ./delimited_read_3.dat
 X: 0.5 to 4.5
Column 1: V1
Column 2: V2
Column 3: V3 is V3 (days)(Julian days since 1-Jan-1900)
Column 4: V4 is V4 (days)(Julian days since 1-Jan-1900)
Column 5: V5 is V5 (hours)(Time of day)
Column 6: V6 is V6 (hours)(Time of day)
 V1 V2 V3 V4 V5 V6

1 / 1: "12/1/99" "12:00" 36493. 36218. 12.00 13.76
2 / 2: "12/2/99" "01:00:13.5" 36494. 36219. 1.00 14.76
3 / 3: "12/3/99x" "2:00x" 36495. 36220. 2.00 15.75
4 / 4: "12/4/99" "03:00" 36496. 36221. 3.00 16.76

Use the date variables in v3 and v4 to define time axes. The date encodings are as expected.

yes? DEFINE AXIS/T/UNITS=days/T0=1-jan-1900 tax = v3
yes? SHOW AXIS tax
name axis # pts start end
TAX TIME 4 r 01-DEC-1999 00:00 04-DEC-1999
00:00

T0 = 1-JAN-1900

yes? DEFINE AXIS/T/UNITS=days/T0=1-jan-1900 tax = v4
yes? SHOW AXIS tax
name axis # pts start end
TAX TIME 4 r 01-MAR-1999 00:00 04-MAR-1999
00:00
T0 = 1-JAN-1900

Next we'll specify each column's type. Only the first two characters of the type are needed.
Now we can read those columns which had errors, except for the record with the errors.

yes? COLUMNS/TYPE="da,ti,date, date, time, time" delimited_read_3.dat
yes? LIST v1,v2,v3,v4,v5,v6
 DATA SET: ./delimited_read_3.dat
 X: 0.5 to 4.5
Column 1: V1 is V1 (days)(Julian days since 1-Jan-1900)
Column 2: V2 is V2 (hours)(Time of day)
Column 3: V3 is V3 (days)(Julian days since 1-Jan-1900)
Column 4: V4 is V4 (days)(Julian days since 1-Jan-1900)
Column 5: V5 is V5 (hours)(Time of day)
Column 6: V6 is V6 (hours)(Time of day)
 V1 V2 V3 V4 V5 V6
1 / 1: 36493. 12.00 36493. 36218. 12.00 13.76
2 / 2: 36494. 1.00 36494. 36219. 1.00 14.76
3 / 3: 36495. 36220. 2.00 15.75
4 / 4: 36496. 3.00 36496. 36221. 3.00 16.76

Delimiters can be used to break up individual fields. Use both the slash and a comma
(indicated by backslash and comma \,)

FILE/FORM=delim/DELIM="/,\," delimited_read_3.dat
LIST V1,V2,V3,V4,v5,v6
 DATA SET: ./delimited_read_3.dat

 X: 0.5 to 4.5
Column 1: V1
Column 2: V2
Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
 V1 V2 V3 V4 V5 V6
1 / 1: 12.00 1.000 "99" "12:00" 12.00 1.000
2 / 2: 12.00 2.000 "99" "01:00:13.5" 12.00 2.000
3 / 3: 12.00 3.000 "99x" "2:00x" 12.00 3.000
4 / 4: 12.00 4.000 "99" "03:00" 12.00 4.000

Ch2 Sec6. TRICKS TO READING BINARY AND ASCII FILES

Since binary and ASCII files are found in a bewildering variety of non-standardized formats
a few tricks may help with reading difficult cases.

● Sometimes variables are interleaved with data axes in unstructured (stream) binary
files. A simple trick is to read them all as a single variable, say, "Vall," in which the
sequence of variables in the file V1, V2, V3, ... is regarded as an axis of the grid.
Then extract the variables by defining V1 = Vall[I=1] (if the I axis was used, else
J=1, K=1, or L=1) as needed.

● In some ASCII files the variables are presented as blocks—a full grid of variable 1,
then a full grid of variable 2, etc. These files may be read using Unix soft links so
that the same file can be opened as several Ferret data sets. Then use the FILE
command to point separately to each soft link using the /SKIP qualifier to locate the
correct starting point in the file for each variable. For example,

Unix commands:

 ln -s my_data my_dat.v1
 ln -s my_data my_dat.v2
 ln -s my_data my_dat.v3

Ferret commands:

 yes? FILE/SKIP=0/VAR=v1 my_dat.v1
 yes? FILE/SKIP=100/VAR=v2 my_dat.v2
 yes? FILE/SKIP=200/VAR=v3 my_dat.v3

● If an ASCII file contains a repeating sequence of records try describing the entire
sequence using a single FORTRAN FORMAT statement. An example of such a
statement would be (3F8.4,2(/5F6.2)). The slash character and the nested parentheses
allow multi-record groups to appear as a single format. Note that the /COLUMNS
qualifier should reflect the total number of columns in the repeating group of
records.

● If an ASCII or binary file contains gridded data in which the order of axes is not X-Y-
Z-T read the data in (which results in the wrong axis ordering) and use the
LIST/ORDER= to permute the order on output. The resulting file will have the
desired axis ordering.

● If the times and geographical coordinate locations of the grid are inter-mixed with
the dependent variables in the file then 1) issue a FILE command to read the
coordinates only; 2) use DEFINE AXIS/FROM_DATA to define axes and DEFINE
GRID to define the grid; 3) use FILE/GRID=mygrid to read the file again.

Ch2 Sec7. ACCESS TO REMOTE DATA SETS WITH DODS

Ch2 Sec7.1. What is DODS?

DODS is now called OPenDAP; we continue to refer to it as DODS in this manual for now.
 DODS, the Distributed Oceanographic Data System, allows users to access data anywhere
from the Internet using a variety of client/server methods, including Ferret. Employing
technology similar to that used by the World Wide Web, DODS and Ferret create a
powerful tool for the retrieval, sampling, analyzing and displaying of datasets; regardless of
size or data format (though there are data format limitations).

For more information on DODS, please see the DODS home page at

 http://unidata.ucar.edu/packages/dods/

Similar to the WWW, DODS is an emerging technology and is under development. As a
result, it is likely that the details with which things are accomplished will be changing.

http://unidata.ucar.edu/packages/dods/

Ch2 Sec7.2. Accessing Remote Data Sets

Datasets are accessed through Ferret using their raw Universal Resource Locator (URL)
address. For example, to access the COADS climatology, hosted at PMEL:

yes? use "http://www.ferret.noaa.gov/cgi-bin/nph-
nc/data/coads_climatology.nc"

Once the dataset has been initialized, it is used just like any other local dataset.

yes? list/x=140w/y=2n/t="16-Feb" sst
 SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 141W
 LATITUDE: 1N
 TIME: 15-FEB 16:29
 DATA SET: http://www.ferret.noaa.gov/cgi-bin/nph-
nc/data/coads_climatology.nc
 26.39

To locate DODS data, you can search the NVODS /DODS List of DODS datasets at
http://www.unidata.ucar.edu/cgi-bin/dods/datasets/datasets.cgi?xmlfilename=datasets.xml
or the Global Change Master Directory at http://gcmd.gsfc.nasa.gov/

Ch2 Sec7.3. Debugging Access to Remote DODS Data Sets

To find out more information about a particular dataset, or to debug problems, there are
three elements of the dataset which may be accessed via a web browser. To access this
information, merely append a dds, das, or info to the dataset name. For example:

http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.dds

DDS stands for Data Description Structure and this will return a text description of the data
sets structure.

http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.das

http://www.unidata.ucar.edu/cgi-bin/dods/datasets/datasets.cgi?xmlfilename=datasets.xml
http://gcmd.gsfc.nasa.gov/

DAS stands for Dataset Attribute Structure and this will return a text description of
attributes assigned to the variables in the data set.

http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.info

This will return a text description of the variables in the dataset.

Ch2 Sec7.4. Security

Some DODS data providers will choose to control access to some or all of their data. When
you request data from one of these servers, the DODS client will prompt you for a username
and password. If you want to avoid the prompt, you can embed a username and password in
it, like this:

http://user:password@www.dods.org/nph-dods/etc...

Ch2 Sec7.5. Sharing Data Sets via DODS

One of the most powerful aspect of DODS is the ease with which it allows for the sharing of
data. With just a few simple steps, anyone running a web server can also be a DODS data
server, thereby allowing data set access to anyone with an Internet connection.

Simply copying a few precompiled binaries into the cgi-bin directory of an already
configure httpd server is all it takes to become a DODS server. Once the server is
configured, adding or removing data sets is as simple as copying them to the server data
directory or deleting them from that directory.

This ability has such immense potential that it bears extra emphasis. Imagine that within
seconds of finishing a model run, a remote colleague is able to look at your dataset with
whatever DODS client he/she desires, be it Ferret, or Matlab, etc. No need for you to
package up the data or for your colleague to download and/or reformat it, it is ready to be
analyzed right away.

Ch2 Sec7.6. DODS caching

This feature allows caching of frequently accessed DODS-served datasets to produce a
quicker response when requesting the remote data. The first time you access a DODS data
set, a file in the users home directory will be created called .dodsrc, the DODS client
initialization file. Please see the DODS Users Guide for details of what this file contains.

Also created will be a .dods_cache directory, which by default (as mentioned above) is
created in the users home directory. This is where all the cached information is stored. To
clear the DODS cache, simply delete the .dods_cache directory and all of it's contents (for
example, rm -r ~/.dods_cache). This directory will be recreated and repopulated with
caching information the next time data is accessed via DODS and caching is turned on. Of
course, all of the above values can be modified to better suit individual needs, and will be
incorporated the next time Ferret is run. For example, to turn caching off, simply set
USE_CACHE to 0, and restart Ferret.

For more detailed information on using DODS, and on setting up a DODS server, see the
DODS home page (http://unidata.ucar.edu/packages/dods).

Ch2 Sec7.7. Proxy servers

A DODS client can negotiate proxy servers, with help from directions in its configuration
file. The parameters that control proxy behavior are fully documented in the DODS Users
Guide, see the link above.

http://unidata.ucar.edu/packages/dods

Chapter 3: VARIABLES AND EXPRESSIONS

Ch3 Sec1. VARIABLES

Variables are of 2 kinds:

1) file variables (read from disk files)

2) user-defined variables (defined by the user with LET command)

Both types may be accessed identically in all commands and expressions.

Variables, regardless of kind, possess the following associated information:

 1) grid—the underlying coordinate structure
 2) units
 3) title
 4) title modifier (additional explanation of variable)
 5) flag value for missing data points

Use the commands SHOW DATA and SHOW VARIABLES to examine file variables and user-
defined variables, respectively.

The pseudo-variables I, J, K, L, X, Y, Z, T and others may be used to refer to the underlying grid
locations and characteristics and to create abstract variables.

For a description of string variables and arrays, see the chapter on "Handling String Data", p. 195.

Ch3 Sec1.1. Variable syntax

Variables in Ferret are referred to by names with optional qualifying information appended in
square brackets. See DEFINE VARIABLE (p. 301) for a discussion of legal variable names.

The information that may be included in the square brackets includes

D=data_set_name_or_number ! indicate the data set
G=grid_or_variable_name ! request a regridding
X=,Y=,Z=,T=,I=,J=,K=,L= ! specify region and transformation
 e.g. LIST V[x=1:50:5,l=1:30@ave]

See the chapter "Grids and Regions", section "Regions" (p. 135) for more discussion of the
syntax of region qualifiers and transformations.

Some examples of valid variable syntax are

Myvar ! data set and region as per current context
myvar[D=2] ! myvar from data set number 2 (see SHOW DATA)
myvar[D=a_dset] ! myvar from data set a_dset.cdf or a_dset.des
myvar[D=myfile.txt] ! myvar from file myfile.txt
myvar[G=gridname] ! myvar regridded to grid gridname
myvar[G=var2] ! myvar regridded to the grid of var2
 ! which is in the same data set as myvar
myvar[G=var2[D=2]] ! myvar regridded to the grid of var2
 ! which is in data set number 2
myvar[GX=axisname] ! myvar regridded to a dynamic grid which
 ! has X axis axisname
myvar[GX=var2] ! myvar regridded to a dynamic grid which
 ! has the X axis of variable var2
myvar[I=1:31:5] ! myvar subsampled at every 5th point
 ! (regridded to a subsampled axis)
myvar[X=20E:50E:5] ! myvar subsampled at every 5 degrees
 ! (regridded to a 5-deg axis by linear
 ! interpolation)

Ch3 Sec1.2. File variables

File variables are stored in disk files. Input data files can be ASCII, binary, NetCDF, or TMAP-
formatted (see the chapter "Data Set Basics", p. 31). File variables are made available with the
SET DATA (alias USE) command.

In some netCDF files the variable names are not consistent with Ferret's rules for variable naming.
They may be case-sensitive (for example, variables "v" and "V" defined in the same file), may be
restricted names such as the Ferret pseudo-variable names I, J, K, L, X, Y, Z, T, XBOX, YBOX,
ZBOX, or TBOX, or they may include "illegal" characters such as "+", "-", "%", blanks, etc. To
access such variable names in Ferret, simply enclose the name in single quotes. For example,

yes? PLOT 'x'

yes? CONTOUR 'SST from MP/RF measurements'

By the same token when using Ferret to output into netCDF files that Ferret did not itself create,
the results may not be entirely as expected. Case-sensitivity of names is one aspect of this. Since

Ferret is (by default) case insensitive and netCDF files are case-sensitive writing into a "foreign"
file may result in duplicated entities in the file which differ only in case.

Ch3 Sec1.3. Pseudo-variables

Pseudo-variables are variables whose values are coordinates or coordinate information from a
grid. Valid pseudo-variables are

A grid box is a concept needed for some transformations along an axis; it is the length along an
axis that belongs to a single grid point and functions as a weighting factor during integrations and
averaging transformations.

The pseudo-variables I, J, K, and L are subscripts; that is, they are a coordinate system for
referring to grid locations in which the points along an axis are regarded as integers from 1 to the
number of points on the axis. This is clear if you look at one of the sample data sets:

yes? USE levitus_climatology
yes? SHOW DATA
 1> /home/e1/tmap/fer_dsets/descr/levitus_climatology.des (default)
 Levitus annual climatology (1x1 degree)
 diagnostic variables: NOT available
 name title I J K L
 TEMP TEMPERATURE 1:360 1:180 1:20 ...
 ... on grid GLEVITR1 X=20E:20E(380) Y=90S:90N Z=0m:5000m
 SALT SALINITY 1:360 1:180 1:20 ...
 ... on grid GLEVITR1 X=20E:20E(380) Y=90S:90N Z=0m:5000m

We see that there are 20 points along the z-axis (1:20 under K), for example, and that the z-axis
coordinate values range from 0 meters to 5000 meters. Pseudo-variables depend only on the
underlying grid, and not on the variables (in this case, temperature and salt).

Examples: Pseudo-variables

 1) yes? LIST/I=1:10 I
 2) yes? LET xflux = u * xbox[G=u]

Ch3 Sec1.3.1. Grids and axes of pseudo-variables

The name of a pseudo-variable, alone, ("I", "T", "ZBOX", etc.) is not sufficient to determine the
underlying axis of the pseudo-variable. The underlying axis may be specified explicitly, may be

inherited from other variables used in the same expression, may be generated dynamically, or may
be inherited from the current default grid. The following examples illustrate the possibilities:

TEMP + Y ! pseudo-variable Y inherits the y axis of variable TEMP

Y[G=TEMP] ! explicit: Y refers to the y axis of variable TEMP

Y[GY=axis_name] ! explicit: Y refers to axis axis_name

Y[Y=0:90:2] ! y axis is dynamically generated (See "dynamic axes">,
 ! p. 121)

In the expression

LET A = X + Y

in which the definition provides no explicit coaching, nor are there other variables from which Y
can inherit an axis, the axis of Y will be inherited from the current default grid. The current
default grid is specified by the SET GRID command and may be queried at any time with the
SHOW GRID command. SHOW GRID will respond with "Default grid for DEFINE VARIABLE
is grid".

Note that when pseudo-variables are buried within a user variable definition they do not inherit
from variables used in conjunction with the user variable. For example, contrast these expressions
involving pseudo-variable Y

USE coads_climatology ! has variable SST

LET A = Y ! Y buried inside variable A (axis indeterminate)

LIST SST + A ! y axis inherited from current default grid

LIST SST + Y ! y axis inherited from grid of SST

LIST SST + A[G=SST] ! y axis inherited from grid of SST

Ch3 Sec1.4. User-defined variables

New variables can be defined from existing variables and from abstract mathematical quantities
(such as COS(latitude)) with command DEFINE VARIABLE (alias LET). The section later in
this chapter, Defining New Variable (p. 115) expands on this capability.

See command DEFINE VARIABLE (p. 301) and command LET (p. 315) in the Commands
Reference. Example 3 shows the use of masking, a useful concept in constructing variables.

Examples: User-defined variables

1) yes? LET/TITLE="Surface Relief x1000 (meters)" r1000=rose/1000
2) yes? LET/TITLE="Temperature Deviation" tdev=temp - temp[Z=@ave]

3) yes? LET a = IF (sst GT 20. AND sst LT 30.) THEN sst ELSE 20.

Ch3 Sec1.5. Abstract variables

Ferret can be used to manipulate abstract mathematical quantities such as SIN(x) or
 EXP(k*t)—quantities that are independent of file variable values. Such quantities are referred to
as abstract expressions.

Example: Abstract variables

Contour the function

COS(a*Y)/EXP(b*T) where a=0.25 and b=-0.02

over the range

Y=0:45 (degrees) and T=1:100 (hours)

with a resolution of

 0.5 degree on the Y axis and 2 hours on the T axis.

Quick and dirty solution:

yes? CONTOUR COS(0.25*Y[Y=0:45:0.5])/EXP(-0.2*T[T=1:100:2])

Nicer (Figure 3_1); plot is documented with correct units and titles):

yes? DEFINE AXIS/Y=0:45:0.5/UNIT=DEGREES yax
yes? DEFINE AXIS/T=1:100:2/UNIT=HOURS tax
yes? DEFINE GRID/T=tax/Y=yax my_grid
yes? SET GRID my_grid
yes? LET a=0.25
yes? LET b=-0.02
yes? CONTOUR COS(a*Y)/EXP(b*T)

See the chapter "Grids and Regions", section "Grids" (p. 119), for more information on grids.

Ch3 Sec1.6. Missing value flags

Data values that are absent or undefined for mathematical reasons (e.g., 1/0) will be represented in
Ferret with a missing value flag. In SHADE outputs a missing value flag embedded at some point
in a variable will result in a transparent rectangular hole equal to the size of the grid cell of the
missing value. In a CONTOUR or FILL plot it will result in a larger hole—extending past the grid
box edge to the coordinate location of the next adjacent non-missing point—since contour lines
cannot be interpolated between a missing value and its neighboring points. In the output of the
LIST command for cases where the /FORMAT qualifier is not used the missing value will be
represented by 4 dots ("...."). For cases where LIST/FORMAT=FORTRAN-format is used the
numerical value of the missing value flag will be printed using the format provided.

Ch3 Sec1.6.1. Missing values in input files

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig01.GIF

Ferret does not impose a standard for missing value flags in input data sets; each variable in each
data set may have its own distinct missing value flag(s). The flag(s) actually in use by a data set
may be viewed with the SHOW DATA/VARIABLES command. If no missing value flag is
specified for a data set Ferret will assume a default value of –1.E+34.

For EZ input data sets, either binary or ASCII, the missing data flag may be specified with the
SET VARIABLE/BAD= command. A different value may be specified for each variable in the
data set.

For NetCDF input data sets the missing value flag(s) is indicated by the values of the attributes
"missing_value" and "_FillValue." If both attributes are defined to have different values both will
be recognized and used by Ferret as missing value indicators, however the occurrences of
_FillValue will be replaced with the value of missing_value as the data are read into Ferret's
memory cache so that only a single missing value flag is apparent inside of Ferret. The command
SET VARIABLE/BAD= can also be applied to NetCDF variables, thereby temporarily setting a
user-imposed value for _FillValue. If there are values of NaN in the file, then NaN must be listed
in either the as either the "missing_value" OR "_FillValue" attribute and then NaN is the missing
value.

Ch3 Sec1.6.2. Missing values in user-defined variables

User-defined variables may in general be defined as expressions involving multiple variables. The
component variables need not in general agree in their choice of missing value flags. The result
variable will inherit the bad value flag of the first variable in the expression. If the first component
in the expression is a constant or a pseudo-variable, then Ferret imposes its default missing value
flag of –1.E+34.

The function MISSING(variable,replacement) provides a limited control over the choice of
missing values in user-defined variables. Note, however, that while the MISSING function will
replace the missing values with other values it will not change the missing value flag. In other
words, the replacement values will no longer be regarded as missing.

Ch3 Sec1.6.3. Missingvalues in output NetCDF files

Values flagged as missing inside Ferret will be faithfully transferred to output files—no
substitution will occur as the data are written. In the case of NetCDF output files both of the
attributes missing_value, and _FillValue will be set equal to the missing value flag.

Under some circumstances it is desirable to save a user-defined variable in a NetCDF file and then
to redefine that variable and to append further output. (An example of this is the process of
consolidating several files of input, say, moored measurements, into a gridded output.) The
process of appending will not change any of the NetCDF attributes—neither long_name (title),
units, nor missing_value or _FillValue. If the subsequent variable definitions do not agree in their
choice of missing value flags the resulting output may contain multiple missing value flags that
will not be properly documented.

An easy "trick" that avoids this situation is to begin all of the variable definitions with an addition
of zero, "LET var = 0 +" The addition of zero will not affect the value of the output but it will
guarantee that a missing value flag of –1.E+34 will be consistently used. Of course, you will want
to use the SET VARIABLE/TITLE= command in conjunction with this approach.

Ch3 Sec1.6.4. Displaying the missing value flag

If the LIST command is used, missing values are, by default, displayed as "...." To examine the
flag as a numerical value, use LIST/FORMAT=(E) (or some other suitable format).

Ch3 Sec1.7. Returning properties of variables

The keyword RETURN= can reveal the size and shape, title, bad flag, units, and other properties
of a variable or expression. See p. 112 for a description of this useful construct.

Ch3 Sec2. EXPRESSIONS

Throughout this manual, Ferret commands that require and manipulate data are informally called
"action" commands. These commands are:

 PLOT
 CONTOUR
 FILL (alias for CONTOUR/FILL)
 SHADE
 VECTOR
 POLYGON
 WIRE
 LIST
 STAT

 LOAD

Action commands may use any valid algebraic expression involving constants, operators
(+,–,*,...), functions (SIN, MIN, INT,...), pseudo-variables (X, TBOX, ...) and other variables.

A variable name may optionally be followed by square brackets containing region, transformation,
data set, and regridding qualifiers. For example, "temp", "salt[D=2]", "u[G=temp"],
"u[Z=0:200@AVE]", "v[k=1:50:5]

The expressions may also contain a syntax of:

 IF condition THEN expression_1 ELSE expression_2

Examples: Expressions

i) temp ^ 2
 temperature squared

ii) temp - temp[Z=@AVE]
for the range of Z in the current context, the temperature deviations from the vertical average

iii) COS(Y)
the cosine of the Y coordinate of the underlying grid (by default, the y-axis is implied by the other
variables in the expression)

iv) IF (vwnd GT vwnd[D=monthly_navy_winds]) THEN vwnd ELSE 0
use the meridional velocity from the current data set wherever it exceeds the value in data set
monthly_navy_winds, zero elsewhere.

Ch3 Sec2.1. Operators

Valid operators are

 +
 –
 *
 /
 ^ (exponentiate)
 AND
 OR
 GT

 GE
 LT
 LE
 EQ
 NE

Ch3 Sec2.2. Multi-dimensional expressions

Operators and functions (discussed in the next section, Functions) may combine variables of like
dimensions or differing dimensions.

If the variables are of like dimension then the result of the combination is of the same
dimensionality as inputs. For example, suppose there are two time series that have data on the
same time axis; the result of a combination will be a time series on the same time axis.

If the variables are of unlike dimensionality, then the following rules apply:

1) To combine variables together in an expression they must be "conformable" along each axis.

2) Two variables are conformable along an axis if the number of points along the axis is the
same, or if one of the variables has only a single point along the axis (or, equivalently, is normal
to the axis).

3) When a variable of size 1 (a single point) is combined with a variable of larger size, the
variable of size 1 is "promoted" by replicating its value to the size of the other variable.

4) If variables are the same size but have different coordinates, they are conformable, but Ferret
will issue a message that the coordinates on the axis are ambiguous. The result of the combination
inherits the coordinates of the FIRST variable encountered that has more than a single point on the
axis.

Examples:

Assume a region J=50/K=1/L=1 for examples 1 and 2. Further assume that variables v1 and v2
share the same x-axis.

1) yes? LET newv = v1[I=1:10] + v2[I=1:10] !same dimension
(10)

2) yes? LET newv = v1[I=1:10] + v2[I=5] !newv has length
of v1 (10)

3) We want to compare the salt values during the first half of the year with the values for the
second half. Salt_diff will be placed on the time coordinates of the first variable—L=1:6. Ferret
will issue a warning about ambiguous coordinates.

yes? LET salt_diff = salt[L=1:6] - salt[L=7:12]

4) In this example the variable zero will be promoted along each axis.

yes? LET zero = 0 * (i+j)
yes? LIST/I=1:5/J=1:5 zero !5X5 matrix of 0's

5) Here we calculate density; salt and temp are on the same grid. This expression is an XYZ
volume of points (100×100×10) of density at 10 depths based on temperature and salinity values
at the top layer (K=1).

yes? SET REGION/I=1:100/J=1:100
yes? LET dens = rho_un (salt[K=1], temp[K=1], Z[G=temp,K=1:10]

Ch3 Sec2.3. Functions

Functions are utilized with standard mathematical notation in Ferret. The arguments to functions
are constants, constant arrays, pseudo-variables, and variables, possibly with associated qualifiers
in square brackets, and expressions. Thus, all of these are valid function references:

● EXP(-1)
● MAX(a,b)
● TAN(a/b)
● SIN(Y[g=my_sst])
● DAYS1900(1989,{3,6,9},1)

A few functions also take strings as arguments. String arguments must be enclosed in double
quotes. For example, a function to write variable "u" into a file named "my_output.v5d",
formatted for the Vis5D program might be implemented as

● LOAD WRITE_VIS5D("my_output.v5d", a)

You can list function names and argument lists with:

yes? SHOW FUNCTIONS ! List all functions

Yes? SHOW FUNCTIONS *TAN ! List all functions containing string

Valid functions are described in the sections below. They are:

Grid-changing functions

It is generally advisable to include explicit limits when working with functions that replace axes.
 For example, consider the function SORTL(v). The expression

LIST/L=6:10 SORTL(v)

is not equivalent to

LIST SORTL(v[L=6:10])

The former will list the 6th through 10th sorted indices from the entire l range of variable v. The
latter will list all of the indices that result from sorting v[l=6:10].

These functions in Ferret, including XSEQUENCE, SAMPLXY, and so on, are "grid-changing"
functions. This means that the axes of the result may differ from the axes of the arguments. In the
case of XSEQUENCE(sst), for example, the input grid for SST is

 lon
 lat
 normal
 time

whereas the output grid is

 abstract
 normal
 normal
 normal

so all axes of the input are replaced.

Grid-changing functions create a potential ambiguity about region specifications. Suppose that the
result of XSEQUENCE(sst[L=1]) is a list of 50 points along the ABSTRACT X axis. Then it is
natural that

LIST/I=10:20 XSEQUENCE(sst[L=1])

should give elements 10 through 20 taken from that list of 50 points (and it does.) However, one

might think that "I=10:20" referred to a subset of the longitude axis of SST. Therein lies the
ambiguity: one region was specified, but there are 2 axes to which the region might apply.

It gets a degree more complicated if the grid-changing function takes more than one argument.
Since the input arguments need not be on identical grids, a result axis (X,Y,Z, or T) may be
replaced with respect to one argument, but actually taken from another (consider ZAXREPLACE,
for example.) Ferret resolves the ambiguities thusly:

If in the result of a grid-changing function, an axis (X, Y, Z, or T) has been replaced relative to
some argument, then region information which applies to the result of the function on that axis
will NOT be passed to that argument.

So, when you issue commands like

SET REGION/X=20E:30E/Y=0N:20N/L=1
LIST XSEQUENCE(sst)

the X axis region ("20E:30E") applies to the result ABSTRACT axis -- it is not passed along to
the argument, SST. The Y axis region is, in fact, ignored altogether, since it is not relevant to the
result of XSEQUENCE, and is not passed along to the argument.

Ch3 Sec2.3.1. MAX

MAX(A, B) Compares two fields and selects the point by point maximum.
MAX(temp[K=1], temp[K=2]) returns the maximum temperature comparing the first
2 z-axis levels.

Ch3 Sec2.3.2. MIN

MIN(A, B) Compares two fields and selects the point by point minimum.
MIN(airt[L=10], airt[L=9]) gives the minimum air temperature comparing two
timesteps.

Ch3 Sec2.3.3. INT

INT (X) Truncates values to integers.
INT(salt) returns the integer portion of variable "salt" for all values in the current region.

Ch3 Sec2.3.4. ABS

ABS(X) absolute value.
ABS(U) takes the absolute value of U for all points within the current region

Ch3 Sec2.3.5. EXP

EXP(X) exponential e x; argument is real.
EXP(X) raises e to the power X for all points within the current region

Ch3 Sec2.3.6. LN

LN(X) Natural logarithm logeX; argument is real.
LN(X) takes the natural logarithm of X for all points within the current region

Ch3 Sec2.3.7. LOG

LOG(X) Common logarithm log10X; argument is real.
LOG(X) takes the common logarithm of X for all points within the current region

Ch3 Sec2.3.8. SIN

SIN(THETA) Trigonometric sine; argument is in radians and is treated modulo 2*pi.
SIN(X) computes the sine of X for all points within the current region.

Ch3 Sec2.3.9. COS

COS(THETA) Trigonometric cosine; argument is in radians and is treated modulo 2*pi.
COS(Y) computes the cosine of Y for all points within the current region

Ch3 Sec2.3.10. TAN

TAN(THETA) Trigonometric tangent; argument is in radians and is treated modulo 2*pi.
TAN(theta) computes the tangent of theta for all points within the current region

Ch3 Sec2.3.11. ASIN

ASIN(X) Trigonometric arcsine (-pi/2,pi/2) of X in radians.The result will be flagged as missing
if the absolute value of the argument is greater than 1; result is in radians.
ASIN(value) computes the arcsine of "value" for all points within the current region

Ch3 Sec2.3.12. ACOS

COS(X) Trigonometric arccosine (0,pi), in radians. The result will be flagged as missing of the
absolute value of the argument greater than 1; result is in radians.
ACOS (value) computes the arccosine of "value" for all points within the current region

Ch3 Sec2.3.13. ATAN

ATAN(X) Trigonometric arctangent (-pi/2,pi/2); result is in radians.
ATAN(value) computes the arctangent of "value" for all points within the current region

Ch3 Sec2.3.14. ATAN2

ATAN2(X,Y) 2-argument trigonometric arctangent of X/Y (-pi,pi); discontinuous at Y=0.
ATAN2(X,Y) computes the 2-argument arctangent of X/Y for all points within the current
region

Ch3 Sec2.3.15. MOD

MOD(A,B) Modulo operation (arg1 – arg2*[arg1/arg2]). Returns the remainder when the first
argument is divided by the second.
MOD(X,2) computes the remainder of X/2 for all points within the current region

Ch3 Sec2.3.16. DAYS1900

DAYS1900(year,month,day) computes the number of days since 1 Jan 1900. This function is
useful in converting dates to Julian days on the standard Gregorian calendar. If the year is prior
to 1900 a negative number is returned. This means that it is possible to compute Julian days
relative to, say, 1800 with the expression
LET jday1800 = DAYS1900 (year, month, day) - DAYS1900(1800,1,1)

Ch3 Sec2.3.17. MISSING

MISSING(A,B) Replaces missing values in the first argument (multi-dimensional variable) with
the second argument; the second argument may be any conformable variable.
MISSING(temp, -999) replaces missing values in temp with –999
MISSING(sst, temp[D=coads_climatology]) replaces missing sst values with
temperature from the COADS climatology

Ch3 Sec2.3.18. IGNORE0

IGNORE0(VAR) Replaces zeros in a variable with the missing value flag for that variable.
IGNORE0(salt) replaces zeros in salt with the missing value flag

Ch3 Sec2.3.19. RANDU

RANDU(A) Generates a grid of uniformly distributed [0,1] pseudo-random values. The first
valid value in the field is used as the random number seed. Values that are flagged as bad remain
flagged as bad in the random number field.
RANDU(temp[I=105:135,K=1:5]) generates a field of uniformly distributed random
values of the same size and shape as the field "temp[I=105:135,K=1:5]" using temp[I=105,k=1] as
the pseudo-random number seed.

Ch3 Sec2.3.20. RANDN

RANDN(A) Generates a grid of normally distributed pseudo-random values. As above, but
normally distributed rather than uniformly distributed.

Ch3 Sec2.3.21. RHO_UN

RHO_UN(SALT, TEMP, P) Calculates rho (density kg/m^3) from salt (psu), temperature (deg
C) and pressure (decibars) using the 1980 UNESCO International Equation of State (IES80). The
routine uses the high pressure equation of state from Millero et al. (1980) and the oneatmosphere
equation of state from Millero and Poisson (1981) as reported in Gill (1982). The notation follows
Millero et al. (1980) and Millero and Poisson (1981).
RHO_UN(salt, temp, Z)

Ch3 Sec2.3.22. THETA_FO

THETA_FO(SALT, TEMP, Z, REF) Calculates local potential temperature field at salt (psu),
temperature (deg C), pressure (decibars) and specified reference pressure. This calculation uses
Bryden (1973) polynomial for adiabatic lapse rate and Runge-Kutta 4th order integration
algorithm. References: Bryden, H., 1973, Deep-Sea Res., 20, 401–408; Fofonoff, N.M, 1977,
Deep-Sea Res., 24, 489–491.
THETA_FO(salt, temp, Z, Z_reference)

Ch3 Sec2.3.23. RESHAPE

REASHAPE(A, B) The result of the RESHAPE function will be argument A "wrapped" on the
grid of argument B. The limits given on argument 2 are used to specify subregions within the grid
into which values should be reshaped.
RESHAPE(Tseries,MonthYear)

 Two common uses of this function are to view multi-year time series data as a 2-dimensional
field of 12-months vs. year and to map ABSTRACT axes onto real world coordinates. An
example of the former is

DEFINE AXIS/t=15-JAN-1982:15-DEC-1985/NPOINTS=48/UNITS=DAYS tcal
LET my_time_series = SIN(T[gt=tcal]/100)

! reshape 48 months into a 12 months by 4 year matrix

DEFINE AXIS/t=1982:1986:1 tyear
DEFINE AXIS/Z=1:12:1 zmonth
LET out_grid = Z[GZ=zmonth]+T[GT=tyear]
LET my_reshaped = RESHAPE(my_time_series, out_grid)
SHOW GRID my_reshaped
 GRID (G001)
name axis # pts start end
normal X
normal Y
ZMONTH Z 12 r 1 12
TYEAR T 5 r 1982 1986

For any axis X,Y,Z, or T if the axis differs between the input output grids, then limits placed upon
the region of the axis in argument two (the output grid) can be used to restrict the geometry into
which the RESHAPE is performed. Continuing with the preceding example:

! Now restrict the output region to obtain a 6 month by 8 year matrix

LIST RESHAPE(my_time_series,out_grid[k=1:6])
 RESHAPE(MY_TIME_SERIES,OUT_GRID[K=1:6])
 1 2 3 4 5 6
 1 2 3 4 5 6
1982 / 1: 0.5144 0.7477 0.9123 0.9931 0.9827 0.8820
1983 / 2: 0.7003 0.4542 0.1665 -0.1366 -0.4271 -0.6783
1984 / 3: -0.8673 -0.9766 -0.9962 -0.9243 -0.7674 -0.5401
1985 / 4: -0.2632 0.0380 0.3356 0.6024 0.8138 0.9505
1986 / 5: 0.9999 0.9575 0.8270 0.6207 0.3573 0.0610

For any axis X,Y,Z, or T if the axis is the same in the input and output grids then the region from
argument 1 will be preserved in the output. This implies that when the above technique is used
on multi-dimensional input, only the axes which differ between the input and output grids are
affected by the RESHAPE operation. The following filled contour plot of longitude by year
number illustrates by expanding on the above example: (Figure 3_2)

! The year-by-year progression January winds for a longitudinal patch
! averaged from 5s to 5n across the eastern Pacific Ocean. Note that
! k=1 specifies January, since the Z axis is month

USE coads
LET out_grid = Z[GZ=zmonth]+T[GT=tyear]+X[GX=uwnd]+Y[GY=uwnd]
LET uwnd_mnth_ty = RESHAPE(uwnd, out_grid)
FILL uwnd_mnth_ty[X=130W:80W,Y=5S:5N@AVE,K=1]

In the second usage mentioned, to map ABSTRACT axes onto real world coordinates, suppose
xpts and ypts contain time series of length Nt points representing longitude and latitude points
along an oceanographic ship track and the variable global_sst contains global sea surface
temperature data. Then the result of

LET sampled_sst = SAMPLEXY(global_sst, xpts, ypts)

will be a 1-dimensional grid: Nt points along the XABSTRACT axis. The RESHAPE function
can be used to remap this data to the original time axis using

RESHAPE(sampled_sst, xpts)
LET sampled_sst = SAMPLEXY(global_sst,
Xpts[t=1-jan-1980:15-jan-1980],
ypts[t=1-jan-1980:15-jan-1980])
RESHAPE(sampled_sst, xpts[t=1-jan-1980:15-jan-1980])

When the input and output grids share any of the same axes, then the specified sub-region along
those axes will be preserved in the RESHAPE operation. In the example
"RESHAPE(myTseries,myMonthYearGrid)" this means that if myTseries and
myMonthYearGrid were each multidimensional variables with the same latitude and longitude
grids then

RESHAPE(myTseries[X=130E:80W,Y=5S:5N],myMonthYearGrid)

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig02.GIF

would map onto the X=130E:80W,Y=5S:5N sub-region of the grid of myMonthYearGrid. When
the input and output axes differ the sub-region of the output that is utilized may be controlled by
inserting explicit limit qualifiers on the second argument

Ch3 Sec2.3.24. ZAXREPLACE

ZAXREPLACE(V,ZVALS,ZAX) Convert between alternative monotonic Zaxes, where the
mapping between the source and destination Z axes is a function of X,Y, and or T. The function
regrids between the Z axes using linear interpolation between values of V.

Typical applications in the field of oceanography include converting from a Z axis of layer
number to a Z axis in units of depth (e.g., for sigma coordinate fields) and converting from a Z
axes of depth to one of density (for a stably stratified fluid).

Argument 1, V, is the field of data values, say temperature on the "source" Z-axis, say, layer
number. The second argument, ZVALS, contains values in units of the desired destination Z axis
(ZAX) on the same Z axis as V — for example, depth values associated with each vertical layer.
The third argument, ZAX, is any variable defined on the destination Z axis, often
"Z[gz=zaxis_name]" is used.

The ZAXREPLACE function takes three arguments. The first argument, V, is the field of data
values, say temperature or salinity. This variable is available on what we will refer to as the
"source" Z-axis -- say in terms of layer number. The second argument, ZVALS, contains the
values of the desired destination Z axis defined on the source Z axis -- for example, it may contain
the depth values associated with each vertical layer. It should always share the Z axis from the
first argument. The third argument, ZAX, is defined on the destination Z axis. Only the Z axis of
this variable is relevant -- the values of the variable, itself, and its structure in X, Y, and T are
ignored. Often "Z[gz=zaxis_name]" is used for the third argument.

Note:

ZAXREPLACE is a "grid-changing" function; its output grid is different from the input
arguments. Therefore it is best to use explicit limits on the arguments rather than a SET REGION
command. (See p. 65)

 For example:

Contour salt as a function of density:

yes? set dat ocean_atlas_annual

! Define density sigma, then density axis axden
yes? let sigma=rho_un(salt,temp,0)-1000
yes? define axis/z=21:28:.05 axden

! Regrid to density
yes? let saltonsigma= ZAXREPLACE(salt, sigma, z[gz=axden])

! Make Pacific plot
yes? fill/y=0/x=120e:75w/vlimits=28:21:-1 saltonsigma

Note that one could regrid the variable in the third argument to the destination Z axis using
whichever of the regridding transformations that is best for the analysis, e.g. z[gz=axdens@AVE]

Ch3 Sec2.3.25. XSEQUENCE, YSEQUENCE, ZSEQUENCE,
TSEQUENCE

XSEQUENCE(A), YSEQUENCE(A), ZSEQUENCE(A), TSEQUENCE(A) Unravels the data
from the argument into a 1-dimensional line of data on an ABSTRACT axis.

Note:

This family of functions are "grid-changing" functions; the output grid is different from the input
arguments. Therefore it is best to use explicit limits on the argument rather than a SET REGION
command. (See p. 65)

Ch3 Sec2.3.26. FFTA

FFTA(A) Computes Fast Fourier Transform amplitude spectra, normalized by 1/N

Arguments: A Variable with regular time axis.

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Generated by the function: frequency in cyc/(time units
from A)

See the demonstration script ef_fft_demo.jnl for an example using this function. Also see the
external functions fft_re, fft_im, and fft_inverse for more options using FFT's

 FFTA returns a(j) in

 f(t) = Σ(j=1 to N/2)[α(j) cos(jωt + Φ(j))]

where [] means "integer part of", ω=2 pi/T is the fundamental frequency, and T=N*∆t is the time
span of the data input to FFTA. Φ is the phase (returned by FFTP, see next section)

The units of the returned time axis are "cycles/∆t" where ∆t is the time unit of the input axis. The
Nyquist frequency is yquist = 1./(2.*boxsize), and the frequency axis runs from freq1 = yquist/
float(nfreq) to freqn = yquist

Even and odd N's are allowed. N need not be a power of 2. FFTA and FFTP assume
f(1)=f(N+1), and the user gives the routines the first N pts.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at www.netlib.org.

Specifying the context of the input variable explicitly e.g.

LIST FFTA(A[l=1:58])

 will prevent any confusion about the region. See the note in chapter 3 (p. 65)on the context of
variables passed to functions.

Ch3 Sec2.3.27. FFTP

FFTP(A) Computes Fast Fourier Transform phase

Arguments: A Variable with regular time axis.

http://www.ferret.noaa.gov/Ferret/Demos/ef_fft_demo/ef_fft_demo.html
http://www.netlib.org/

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Generated by the function: frequency in cyc/(time units
from A)

See the demonstration script ef_fft_demo.jnl for an example using this function.

FFTP returns Φ(j) in

 f(t) = Σ(j=1 to N/2)[α(j) cos(jωt + Φ(j))]

where [] means "integer part of", ω=2 pi/T is the fundamental frequency, and T=N*∆t is the time
span of the data input to FFTA.

The units of the returned time axis are "cycles/∆t" where ∆t is the time increment. The Nyquist
frequency is yquist = 1./(2.*boxsize), and the frequency axis runs from freq1 = yquist/ float(nfreq)
to freqn = yquist

Even and odd N's are allowed. Power of 2 not required. FFTA and FFTP assume f(1)=f(N+1),
and the user gives the routines the first N pts.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at www.netlib.org.

Ch3 Sec2.3.28. SAMPLEI

SAMPLEI(TO_BE_SAMPLED,X_INDICES) samples a field at a list of X indices, which are a
subset of its X axis

Arguments: TO_BE_SAMPLED Data to sample

 X_INDICES list of indices of the variable TO_BE_SAMPLED

http://www.ferret.noaa.gov/Ferret/Demos/ef_fft_demo/ef_fft_demo.html
http://www.netlib.org/

Result Axes: X ABSTRACT; length same as X_INDICES

 Y Inherited from TO_BE_SAMPLED

 Z Inherited from TO_BE_SAMPLED

 T Inherited from TO_BE_SAMPLED

See the demonstration ef_sort_demo.jnl for a common useage of this function. As with other
functions which change axes (see p. 65), specify any region information for the variable
TO_BE_SAMPLED explicitly in the function call, e.g.

yes? LET sampled_data = samplei(airt[X=160E:180E], xindices)

Ch3 Sec2.3.29. SAMPLEJ

SAMPLEJ(TO_BE_SAMPLED,Y_INDICES) samples a field at a list of Y indices, which are
a subset of its Y axis

Arguments: TO_BE_SAMPLED Data to be sample

 Y_INDICES list of indices of the variable TO_BE_SAMPLED

Result Axes: X Inherited from TO_BE_SAMPLED

 Y ABSTRACT; length same as Y_INDICES

 Z Inherited from TO_BE_SAMPLED

 T Inherited from TO_BE_SAMPLED

See the demonstration ef_sort_demo.jnl for a common useage of this function. As with other
functions which change axes(see p. 65), specify any region information for the variable
TO_BE_SAMPLED explicitly in the function call.

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

Ch3 Sec2.3.30. SAMPLEK

SAMPLEK(TO_BE_SAMPLED, Z_INDICES) samples a field at a list of Z indices, which are
a subset of its Z axis

Arguments: TO_BE_SAMPLED Data to sample

 Z_INDICES list of indices of the variable TO_BE_SAMPLED

Result Axes: X Inherited from TO_BE_SAMPLED

 Y Inherited from TO_BE_SAMPLED

 Z ABSTRACT; length same as Z_INDICES

 T Inherited from TO_BE_SAMPLED

See the demonstration ef_sort_demo.jnl for a common useage of this function. As with other
functions which change axes(see p. 65), specify any region information for the variable
TO_BE_SAMPLED explicitly in the function call.

Ch3 Sec2.3.31. SAMPLEL

SAMPLEL(TO_BE_SAMPLED, T_INDICES) samples a field at a list of T indices, a subset of
its T axis

Arguments: TO_BE_SAMPLED Data to sample

 T_INDICES list of indices of the variable TO_BE_SAMPLED

Result Axes: X Inherited from TO_BE_SAMPLED

 Y Inherited from TO_BE_SAMPLED

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

 Z Inherited from TO_BE_SAMPLED

 T ABSTRACT; length same as X_INDICES

See thedemonstration ef_sort_demo.jnl for a common useage of this function. As with other
functions which change axes (see p. 65), specify any region information for the variable
TO_BE_SAMPLED explicitly in the function call.

Ch3 Sec2.3.32. SAMPLEIJ

SAMPLEIJ(DAT_TO_SAMPLE,XPTS,YPTS) Returns data sampled at a subset of its grid
points, defined by (XPTS, YPTS)

Arguments: DAT_TO_SAMPLE Data to sample, field of x, y, and perhaps z and t

 XPTS X indices of grid points

 YPTS Y indices of grid points

Result Axes: X ABSTRACT, length of list (xpts,ypts)

 Y NORMAL (no axis)

 Z Inherited from DAT_TO_SAMPLE

 T Inherited from DAT_TO_SAMPLE

 As with other functions which change axes (see p. 65), specify any region information for the
variable TO_BE_SAMPLED explicitly in the function call.

Ch3 Sec2.3.33. SAMPLET_DATE

SAMPLET_DATE (DAT_TO_SAMPLE, YR, MO, DAY, HR, MIN, SEC) Returns data

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

sampled by interpolating to one or more times

Arguments: DAT_TO_SAMPLE Data to sample, field of x, y, z and t

 YR Year(s), integer YYYY

 MO Month(s), integer month number MM

 DAY Day(s) of month, integer DD

 HR Hour(s) integer HH

 MIN Minute(s), integer MM

 SEC Second(s), integer SS

Result Axes: X Inherited from DAT_TO_SAMPLE

 Y Inherited from DAT_TO_SAMPLE

 Z Inherited from DAT_TO_SAMPLE

 T ABSTRACT; length is # times sampled

 As with other functions which change axes (see p. 65), specify any region information for the
variable DAT_TO_SAMPLE explicitly in the function call.

Example:

List wind speed at a subset of points from the COADS_CLIMATOLOGY data set

yes? use coads_climatology
yes? set region/x=131e:135e/y=39n
yes? list samplet_date(wspd, 0, {5,8}, {16,15}, {12,12}, 0, 0)
yes? list samplet_date(wspd, 0, {5,8}, {16,15}, {12,12}, 0, 0)

 SAMPLET_DATE(WSPD, 0, {5,8}, {16,15}, {12,12}, 0, 0)
 LATITUDE: 39N
 DATA SET: /home/ja9/tmap/fer_dsets/descr/coads_climatology.des
 131E 133E 135E

 56 57 58
1 / 1: 5.782 6.143 5.660
2 / 2: 5.313 5.386 5.304

Ch3 Sec2.3.34. SAMPLEXY

SAMPLEXY(DAT_TO_SAMPLE,XPTS,YPTS) Returns data sampled at a set of (X,Y)
points, using linear interpolation

Arguments: DAT_TO_SAMPLE Data to sample

 XPTS X values of sample points

 YPTS Y values of sample points

Result Axes: X ABSTRACT; length same as XPTSand YPTS

 Y NORMAL (no axis)

 Z Inherited from DAT_TO_SAMPLE

 T Inherited from DAT_TO_SAMPLE

Note:

SAMPLEXY is a "grid-changing" function; its output grid is different from the input arguments.
 Therefore it is best to use explicit limits on the first argument rather than a SET REGION
command. (See p. 65)

Example:

Plot a section of data taken along a slanted line in the Pacific (Figure3_3a). One could use a ship
track, specifying its coordinates as xlon, ylat.

yes? USE ocean_atlas_annual
yes? LET xlon = 234.5 + I[I=1:50] ! define the slant line
yes? LET dely = 24./49
yes? LET ylat = 24.5 - dely*i[i=1:50] + dely

yes? PLOT/VS/LINE/SYM=27 xlon,ylat ! line off Central America
yes? GO land

Now sample the field "salt" along this track and make a filled contour plot. The horizontal axis is
abstract; it is a count of the number of points along the track. To speed the calculation, or if we
otherwise want to restrict the region used on the variable salt, put that information in explicit
limits on the first argument. (Figure3_3b)

yes? LET slantsalt = samplexy(salt[x=200:300,y=0:30],xlon,ylat)
yes? FILL/LEVELS=(33.2,35.2,0.1)/VLIMITS=0:4000 slantsalt

Ch3 Sec2.3.35. SCAT2GRIDGAUSS_XY

SCAT2GRIDGAUSS_XY(XPTS, YPTS, F, XCOORD, YCOORD, XSCALE, YSCALE,
XCUTOFF, YCUTOFF) Use Gaussian weighting to grid scattered data to an XY grid

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig03a.GIF
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig03b.GIF

Arguments: XPTS x-coordinates of scattered input triples; may be fcn of time

 YPTS y-coordinates of scattered input triples; may be fcn of time

 F F(X,Y) 3rd component of scattered input triples. May be
fcn of time

 XAXPTS coordinates of X-axis of a regular output grid

 YAXPTS coordinates of Y-axis of a regular output grid

 XSCALE Mapping scale for Gaussian weights in Y direction, in data
units (e.g. lon or m). See the discussion below.

 YSCALE Mapping scale for Gaussian weights in Y direction, in data
units (e.g. lat or m)

 XCUTOFF Cutoff for weight function in the X direction. Only
scattered points within XCUTOFF*XSCALE and
YCUTOFF*YSCALE of the grid box center are included
in the sum for the grid box.

 YCUTOFF Cutoff for weight function in the Y direction.

Result Axes: X Inherited from XAXPTS

 Y Inherited from YAXPTS

 Z NORMAL (no axis)

 T Inherited from F

Note:

The SCAT2GRIDGAUSS functions are "grid-changing" functions; the output grid is different
from the input arguments. Therefore it is best to use explicit limits on any of the arguments rather
than a SET REGION command. (See p. 65)

Quick example:

yes? DEFINE AXIS/X=180:221:1 xax
yes? DEFINE AXIS/Y=-30:10:1 yax
yes? ! read some data
yes? SET DATA/EZ/VARIABLES="times,lats,lons,var" myfile.dat

yes? LET my_out = SCAT2GRIDGAUSS_XY(lons, lats, var, x[gx=xax], y[gy=yax],
2, 2, 2, 2)
yes? SHADE my_out

The SCAT2GRIDGAUSS* functions use a Gaussian interpolation method to map irregular
locations (xn, yn) to a regular grid (x0, y0). For examples of the gridding functions, run the script
objective_analysis_demo, or see the on-line demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Parameters for a square grid and a fairly dense distribution of scattered points relative to the grid
might be XSCALE=YSCALE = 0.5, and XCUTOFF=YCUTOFF = 2. To get better coverage, use
a coarser grid or increase XSCALE, YSCALE and/or XCUTOFF, YCUTOFF.

The value of the gridded function F at each grid point (x0, y0) is computed by:

 F(x0,y0) = Σ(n=1 to Np)F(xn,yn)W(xn,yn) / Σ(n=1 to Np)W(xn,yn)

Where Np is the total number of irregular points within the "influence region" of a particular grid
point, (determined by the CUTOFF parameters, defined below). The Gaussian weight fucntion
Wn is given by

Wn(xn,yn) = exp{-[(xn-x0)2/(X)2 + (yn-y0)2/(Y)2]}

X and Y in the denominators on the right hand side are the mapping scales, arguments XSCALE
and YSCALE.

The weight function has a nonzero value everywhere, so all of the scattered points in theory could
be part of the sum for each grid point. To cut computation, the parameters XCUTOFF and
YCUTOFFf are employed. If a cutoff of 2 is used (e.g. XCUTOFF* XSCALE=2), then the
weight function is set to zerowhen Wn< e-4. This occurs where distances from the grid point are
less than 2 times the mapping scales X or Y.

(Reference for this method: Kessler and McCreary, 1993: The Annual Wind-driven Rossby Wave
in the Subthermocline Equatorial Pacific, Journal of Physical Oceanography 23, 1192 -1207)

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.36. SCAT2GRIDGAUSS_XZ

SCAT2GRIDGAUSS_XZ(XPTS, ZPTS, F, XAXPTS, ZAXPTS, XSCALE, ZSCALE,
XCUTOFF, ZCUTOFF) Use Gaussian weighting to grid scattered data to an XZ grid

Arguments: XPTS x-coordinates of scattered input triples; may be fcn of time

 ZPTS z-coordinates of scattered input triples; may be fcn of time

 F F(X,Z) 3rd component of scattered input triples. May be
fcn of time

 XAXPTS coordinates of X-axis of a regular output grid

 ZAXPTS coordinates of Z-axis of a regular output grid

 XSCALE Mapping scale for Gaussian weights in Y direction, in data
units (e.g. lon or m). See the discussion under
SCAT2GRIDGAUSS_XY.

 ZSCALE Radius of influence in the Z direction, in data units (e.g. m
or km)

 XCUTOFF Cutoff for weight function in the X direction. Only
scattered points within XCUTOFF*XSCALE and
ZCUTOFF*ZSCALE of the grid box center are included
in the sum for the grid box.

 ZCUTOFF Cutoff for weight function in the Z direction.

Result Axes: X Inherited from XAXPTS

 Y NORMAL (no axis)

 Z Inherited from ZAXPTS

 T Inherited from F

See the description under SCAT2GRIDGAUSS_XY (p. 80). For examples of the gridding
functions, run the script objective_analysis_demo, or see the on-line demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.37. SCAT2GRIDGAUSS_YZ

SCAT2GRIDGAUSS_YZ(YPTS, zPTS, F, YAXPTS, ZAXPTS, YSCALE, ZSCALE,
YCUTOFF, ZCUTOFF) Use Gaussian weighting to grid scattered data to a YZ grid

Arguments: YPTS y-coordinates of scattered input triples; may be fcn of time

 ZPTS z-coordinates of scattered input triples; may be fcn of time

 F F(Y,Z) 3rd component of scattered input triples. May be
fcn of time

 YAXPTS coordinates of Y-axis of a regular output grid

 ZAXPTS coordinates of Z-axis of a regular output grid

 YSCALE Mapping scale for Gaussian weights in Y direction, in data
units (e.g. lat or m). See the discussion under
SCAT2GRIDGAUSS_XY.

 ZSCALE Radius of influence in the Z direction, in data units (e.g. m
or km)

 YCUTOFF Cutoff for weight function in the Y direction. Only
scattered points within YCUTOFF*YSCALE and
ZCUTOFF*ZSCALE of the grid box center are included
in the sum for the grid box.

 ZCUTOFF Cutoff for weight function in the Y direction.

Result Axes: X NORMAL (no axis)

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

 Y Inherited from YAXPTS

 Z Inherited from ZAXPTS

 T Inherited from F

See the description under SCAT2GRIDGAUSS_XY (p. 80). For examples of the gridding
functions, run the script objective_analysis_demo, or see the on-line demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.38. SCAT2GRIDLAPLACE_XY

SCAT2GRIDLAPLACE_XY(XPTS, YPTS, F, XAXPTS, YAXPTS, CAY, NRNG) Use
Laplace/ Spline interpolation to grid scattered data to an XY grid.

Arguments: XPTS x-coordinates of scattered input triples. May be fcn of time

 YPTS y-coordinates of scattered input triples. May be fcn of time

 F F(X,Y) 3rd component of scattered input triples. May be
fcn of time

 XAXPTS coordinates of X-axis of a regular output grid

 YAXPTS coordinates of Y-axis of a regular output grid

 CAY Amount of spline eqation (between 0 and inf.) vs Laplace
interpolation

 NRNG Grid points more than NRNG grid spaces from the nearest
data point are set to undefined.

Result Axes: X Inherited from XAXPTS

 Y Inherited from YAXPTS

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

 Z NORMAL (no axis)

 T Inherited from F

Note:

The SCAT2GRIDLAPLACE functions are "grid-changing" functions; the output grid is different
from the input arguments. Therefore it is best to use explicit limits on any of the arguments rather
than a SET REGION command. (See p. 65)

Quick example:

yes? DEFINE AXIS/X=180:221:1 xax
yes? DEFINE AXIS/Y=-30:10:1 yax
yes? ! read some data
yes? SET DATA/EZ/VARIABLES="times,lats,lons,var" myfile.dat

yes? LET my_out = SCAT2GRIDLAPLACE_XY(lons, lats, var, x[gx=xax], y[gy=yax],
2., 5)
yes? SHADE my_out

For examples of the gridding functions, run the script objective_analysis_demo, or see
the on-line demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

The SCAT2GRIDLAPLACE* functions employ the same interpolation method as is used by
PPLUS, and appears elsewhere in Ferret, e.g. in contouring. The parameters are used as follows
(quoted from the PPLUS Users Guide):

CAY
If CAY=0.0, Laplacian interpolation is used. The resulting surface tends to have rather sharp
peaks and dips at the data points (like a tent with poles pushed up into it). There is no chance of
spurious peaks appearing. As CAY is increased, Spline interpolation predominates over the
Laplacian, and the surface passes through the data points more smoothly. The possibility of
spurious peaks increases with CAY. CAY= infinity is pure Spline interpolation. An over
relaxation process in used to perform the interpolation. A value of CAY=5 often gives a good
surface.

NRNG
Any grid points farther than NRNG away from the nearest data point will be set to "undefined"
The default used by PPLUS is NRNG = 5

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.39. SCAT2GRIDLAPLACE_XZ

SCAT2GRIDLAPLACE_XZ(XPTS, ZPTS, F, XAXPTS, ZAXPTS, CAY, NRNG) Use
Laplace/ Spline interpolation to grid scattered data to an XZ grid.

Arguments: XPTS x-coordinates of scattered input triples. May be fcn of time

 ZPTS z-coordinates of scattered input triples. May be fcn of time

 F F(X,Z) 3rd component of scattered input triples. May be
fcn of time

 XAXPTS coordinates of X-axis of a regular output grid

 ZAXPTS coordinates of Z-axis of a regular output grid

 CAY Amount of spline eqation (between 0 and inf.) vs Laplace
interpolation

 NRNG Grid points more than NRNG grid spaces from the nearest
data point are set to undefined.

Result Axes: X Inherited from XAXPTS

 Y NORMAL (no axis)

 Z Inherited from ZAXPTS

 T Inherited from F

The gridding algorithm is discussed under SCAT2GRIDLAPLACE_XY (p. 85). For examples of
the gridding functions, run the script objective_analysis_demo, or see the on-line
 demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.40. SCAT2GRIDLAPLACE_YZ

SCAT2GRIDLAPLACE_YZ(YPTS, ZPTS, F, YAXPTS, ZAXPTS, CAY, NRNG) Use
Laplace/ Spline interpolation to grid scattered data to an YZ grid.

Arguments: YPTS y-coordinates of scattered input triples. May be fcn of time

 ZPTS z-coordinates of scattered input triples. May be fcn of time

 F F(Y,Z) 3rd component of scattered input triples. May be
fcn of time

 YAXPTS coordinates of Y-axis of a regular output grid

 ZAXPTS coordinates of Z-axis of a regular output grid

 CAY Amount of spline eqation (between 0 and inf.) vs Laplace
interpolation

 NRNG Grid points more than NRNG grid spaces from the nearest
data point are set to undefined.

Result Axes: X NORMAL (no axis)

 Y Inherited from YAXPTS

 Z Inherited from ZAXPTS

 T Inherited from F

The gridding algorithm is discussed under SCAT2GRIDLAPLACE_XY (p. 86). For examples of
the gridding functions, run the script objective_analysis_demo, or see the on-line
 demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.41. SORTI

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

SORTI(DAT): Returns indices of data, sorted on the I axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X ABSTRACT, same length as DAT x-axis

 Y Inherited from DAT

 Z Inherited from DAT

 T Inherited from DAT

SORTI, SORTJ, SORTK, and SORTL return the indices of the data after it has been sorted.
 These functions are used in conjunction with functions such as the SAMPLE functions to do
sorting and sampling. See the demonstration ef_sort_demo.jnl for common useage of these
functions.

 As with other functions which change axes (see p. 65), specify any region information for the
variable DAT explicitly in the function call.

Ch3 Sec2.3.42. SORTJ

SORTJ(DAT) Returns indices of data, sorted on the I axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X Inherited from DAT

 Y ABSTRACT, same length as DAT y-axisInherited from
DAT

 Z Inherited from DAT

 T Inherited from DAT

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

See discussion under SORTI

Ch3 Sec2.3.43. SORTK

SORTK(DAT) Returns indices of data, sorted on the I axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X Inherited from DAT

 Y Inherited from DAT

 Z ABSTRACT, same length as DAT x-axis

 T Inherited from DAT

See the discussion under SORTI

Ch3 Sec2.3.44. SORTL

SORTL(DAT) Returns indices of data, sorted on the L axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X Inherited from DAT

 Y Inherited from DAT

 Z Inherited from DAT

 T ABSTRACT, same length as DAT x-axis

See the discussion under SORTI

Ch3 Sec2.3.45. TAUTO_COR

TAUTO_COR(A): Compute autocorrelation function (ACF) of time series, lags of 0,...,N-1,
where N is the length of the time axis.

Arguments: A A function of time, and perhaps x,y,z

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T ABSTRACT, same length as A time axis (lags)

Note:

TAUTO_COR is a "grid-changing" function; its output grid is different from the input arguments.
 Therefore it is best to use explicit limits on the first argument rather than a SET REGION
command. (See p. 65)

Ch3 Sec2.3.46. XAUTO_COR

XAUTO_COR(A): Compute autocorrelation function (ACF) of a series in X, lags of 0,...,N-1,
where N is the length of the x axis.

Arguments: A A function of x, and perhaps y,z,t

Result Axes: X ABSTRACT, same length as X axis of A (lags)

 Y Inherited from A

 Z Inherited from A

 T Inherited from A

Note:

XAUTO_COR is a "grid-changing" function; its output grid is different from the input arguments.
 Therefore it is best to use explicit limits on the first argument rather than a SET REGION
command. (See p. 65)

Ch3 Sec2.4. Transformations

Transformations (e.g., averaging, integrating, etc.) may be specified along the axes of a variable.
Some transformations (e.g., averaging) reduce a range of data to a point; others (e.g.,
differentiating) retain the range.

When transformations are specified along more than one axis of a single variable the order of
execution is X axis first, then Y then Z then T.

The regridding transformations are described in the chapter "Grids and Regions" (p. 119).

Example syntax: TEMP[Z=0:100@LOC:20] (depth at which temp has value 20)

Valid transformations are

Transform
Default

Argument Description

@DIN definite integral (weighted sum)

@IIN indefinite integral (weighted running sum)

@AVE average

@VAR unweighted variance

@MIN minimum

@MAX maximum

@SHF 1 pt shift

@SBX 3 pt boxcar smoothed

@SBN 3 pt binomial smoothed

@SHN 3 pt Hanning smoothed

@SPZ 3 pt Parzen smoothed

@SWL 3 pt Welch smoothed

@DDC centered derivative

@DDF forward derivative

@DDB backward derivative

@NGD number of valid points

@NBD number of bad (invalid) points flagged

@SUM unweighted sum

@RSUM running unweighted sum

@FAV 3 pt fill missing values with average

@FLN:n 1 pt fill missing values by linear interpolation

@FNR:n 1 pt fill missing values with nearest point

@LOC 0 coordinate of ... (e.g., depth of 20 degrees)

@WEQ "weighted equal" (integrating kernel)

@CDA closest distance above

@CDB closest distance below

@CIA closest index above

@CIB closest index below

The command SHOW TRANSFORM will produce a list of currently available transformations.

Examples: Transformations

U[Z=0:100@AVE] – average of u between 0 and 100 in Z

sst[T=@SBX:10] – box-car smooths sst with a 10 time point filter

tau[L=1:25@DDC] – centered time derivative of tau

v[L=@IIN] – indefinite (accumulated) integral of v

qflux[X=@AVE,Y=@AVE] – XY area-averaged qflux

Ch3 Sec2.4.1. General information about transformations

Transformations are normally computed axis by axis; if multiple axes have transformations
specified simultaneously (e.g., U[Z=@AVE,L=@SBX:10]) the transformations will be applied
sequentially in the order X then Y then Z then T. There are two exceptions to this: if @DIN is
applied simultaneously to both the X and Y axes (in units of degrees of longitude and latitude,
respectively) the calculation will be carried out on a per-unit-area basis (as a true double integral)
instead of a per-unit-length basis, sequentially. This ensures that the COSINE(latitude) factors will
be applied correctly. The same applies to @AVE simultaneously on X and Y.

Data that are flagged as invalid are excluded from calculations.

When calculating integrals and derivatives (@IIN, @DIN, @DDC, @DDF, and @DDB) Ferret
attempts to use standardized units for the grid coordinates. If the underlying axis is in a known
unit of length Ferret converts grid box lengths to meters. If the underlying axis is in a known unit
of time Ferret converts grid box lengths to seconds. If the underlying axis is degrees of longitude a
factor of COSINE (latitude) is applied to the grid box lengths in meters.

If the underlying axis units are unknown Ferret uses those unknown units for the grid box lengths.
(If Ferret does not recognize the units of an axis it displays a message to that effect when the
DEFINE AXIS or SET DATA command defines the axis.) See command DEFINE AXIS/UNITS
(p. 296) in the Commands Reference in this manual for a list of recognized units.

All integrations and averaging are accomplished by multiplying the width of each grid box by the
value of the variable in that grid box—then summing and dividing as appropriate for the particular
transformation.

If integration or averaging limits are given as world coordinates, the grid boxes at the edges of the
region specified are weighted according to the fraction of grid box that actually lies within the
specified region. If the transformation limits are given as subscripts, the full box size of each grid
point along the axis is used—including the first and last subscript given. The region information
that is listed with the output reflects this.

Some transformations (derivatives, shifts, smoothers) require data points from beyond the edges
of the indicated region in order to perform the calculation. Ferret automatically accesses this data
as needed. It flags edge points as missing values if the required beyond-edge points are

unavailable (e.g., @DDC applied on the X axis at I=1).

Ch3 Sec2.4.2. Transformations applied to irregular regions

Since transformations are applied along the orthogonal axes of a grid they lend themselves
naturally to application over "rectangular" regions (possibly in 3 or 4 dimensions). Ferret has
sufficient flexibility, however, to perform transformations over irregular regions.

Suppose, for example, that we wish to determine the average wind speed within an irregularly
shaped region of the globe defined by a threshold sea surface temperature value. We can do this
through the creation of a mask, as in this example:

yes? SET DATA coads_climatology
yes? SET REGION/l=1/@t ! January in the Tropical Pacific
yes? LET sst28_mask = IF sst GT 28 THEN 1
yes? LET masked_wind_speed = wspd * sst28_mask
yes? LIST masked_wind_speed[X=@AVE,Y=@AVE]

The variable sst28_mask is a collection of 1's and missing values. Using it as a multiplier on the
wind speed field produces a new result that is undefined except in the domain of interest.

When using masking be aware of these considerations:

● Use undefined values rather than zeros to avoid contaminating the calculation with zero
values.

● The masked region is composed of rectangles at the level of resolution of the gridded
variables; the mask does NOT follow smooth contour lines. To obtain a smoother mask it
may be desirable to regrid the calculation to a finer grid.

● Variables from different data sets can be used to mask one another. For example, the
ETOPO60 bathymetry data set can be used to mask regions of land and sea.

Ch3 Sec2.4.3. General information about smoothing transformations

Ferret provides several transformations for smoothing variables (removing high frequency
variability). These transformations replace each value on the grid to which they are applied with a
weighted average of the surrounding data values along the axis specified. For example, the
expression u[T=@SPZ:3] replaces the value at each (I,J,K,L) grid point of the variable "u" with
the weighted average

u at t = 0.25*(u at t-1) + 0.5*(u at t) + 0.25*(u at t+1)

The various choices of smoothing transformations (@SBX, @SBN, @SPZ, @SHN, @SWL)
represent different shapes of weighting functions or "windows" with which the original variable is
convolved. New window functions can be obtained by nesting the simple ones provided. For
example, using the definitions

yes? LET ubox = u[L=@SBX:15]
yes? LET utaper = ubox[L=@SHN:7]

produces a 21-point window whose shape is a boxcar (constant weight) with COSINE (Hanning)
tapers at each end.

Ferret may be used to directly examine the shape of any smoothing window: Mathematically, the
shape of the smoothing window can be recovered as a variable by convolving it with a delta
function. In the example below we examine (PLOT) the shape of a 15-point Welch window
(Figure 3_4).

! define X axis as [-1,1] by 0.2
yes? GO unit_square
yes? SET REGION/X=-1:1
yes? LET delta =
 IF X EQ 0 THEN 1 ELSE 0
! convolve delta with Welch window
yes? PLOT delta[I=@SWL:15]

Ch3 Sec2.4.4. @DIN—definite integral

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig04.GIF

The transformation @DIN computes the definite integral—a single value that is the integral
between two points along an axis (compare with @IIN). It is obtained as the sum of the
grid_box*variable product at each grid point. Grid points at the ends of the indicated range are
weighted by the fraction of the grid box that falls within the integration interval.

If @DIN is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by indicating a transformation of "@IN4" or "XY integ." See General Information (p 90) for
important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@DIN]

In a latitude/longitude coordinate system X=@DIN is sensitive to the COS(latitude) correction.

Integration over complex regions in space may be achieved by masking the multi-dimensional
variable in question and using the multi-dimensional form of @DIN. For example

yes? LET salinity_where_temp_gt_15 = IF temp GT 15 THEN salt
yes? LIST salinity_where_temp_gt_15[X=@DIN,Y=@DIN,Z=@DIN]

Ch3 Sec2.4.5. @IIN—indefinite integral

The transformation @IIN computes the indefinite integral—at each subscript of the result it is the
value of the integral from the start value to the upper edge of that grid box. It is obtained as a
running sum of the grid_box*variable product at each grid point. Grid points at the ends of the
indicated range are weighted by the fraction of the grid box that falls within the integration
interval. See General Information (p 90) for important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Z=0 u[Y=5S:5N@IIN]

Note 1: The indefinite integral is always computed in the increasing coordinate direction. To
compute the indefinite integral in the reverse direction use

LET reverse_integral = my_var[Y=lo:hi@DIN] - my_var[X=lo:hi@IIN]

Note 2: In a latitude/longitude coordinate system X=@IIN is sensitive to the COS(latitude)
correction.

Note 3: The result of the indefinite integral is shifted by 1/2 of a grid cell from its "proper"
location. This is because the result at each grid cell includes the integral computed to the upper
end of that cell. (This was necessary in order that var[I=lo:hi@DIN] and var[I=lo:hi@IIN]
produce consistent results.)

To illustrate, consider these commands

yes? LET one = x-x+1
yes? LIST/I=1:3 one[I=@din]
 X-X+1
 X: 0.5 to 3.5 (integrated)
 3.000
yes? LIST/I=1:3 one[I=@iin]
 X-X+1
 indef. integ. on X
1 / 1: 1.000
2 / 2: 2.000
3 / 3: 3.000

The grid cell at I=1 extends from 0.5 to 1.5. The value of the integral at 1.5 is 1.000 as reported
but the coordinate listed for this value is 1 rather than 1.5. Two methods are available to correct
for this 1/2 grid cell shift.

Method 1: correct the result by subtracting the 1/2 grid cell error

yes? LIST/I=1:3 one[I=@iin] - one/2
 ONE[I=@IIN] - ONE/2
1 / 1: 0.500
2 / 2: 1.500
3 / 3: 2.500

Method 2: correct the coordinates by shifting the axis 1/2 of a grid cell

yes? DEFINE AXIS/X=1.5:3.5:1 xshift
yes? LET SHIFTED_INTEGRAL = one[I=@IIN]
yes? LET corrected_integral = shifted_integral[GX=xshift@ASN]
yes? LIST/I=1:3 corrected_integral
 SHIFTED_INTEGRAL[GX=XSHIFT@ASN]
1.5 / 1: 1.000
2.5 / 2: 2.000
3.5 / 3: 3.000

Ch3 Sec2.4.6. @AVE—average

The transformation @AVE computes the average weighted by grid box size—a single number
representing the average of the variable between two endpoints.

If @AVE is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by showing @AV4 or "XY ave" as the transformation. See General Information (p 90) for
important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@AVE]

Note that the unweighted mean can be calculated using the @SUM and @NGD transformations.

Averaging over complex regions in space may be achieved by masking the multi-dimensional
variable in question and using the multi-dimensional form of @AVE. For example

yes? LET salinity_where_temp_gt_15 = IF temp GT 15 THEN salt
yes? LIST salinity_where_temp_gt_15[X=@AVE,Y=@AVE,Z=@AVE]

Ch3 Sec2.4.7. VAR—weighted variance

The transformation @VAR computes the weighted variance of the variable with respect to the
indicated region (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et
al., 1986).

As with @AVE, if @VAR is applied simultaneously to multiple axes the calculation is performed
as the variance of a block of data rather than as nested 1-dimensional variances. See General
Information (p 90) for important details about this transformation.

Ch3 Sec2.4.8. MIN—minimum

The transformation @MIN finds the minimum value of the variable within the specified axis
range. See General Information (p 90) for important details about this transformation.

Example:

For fixed Z and Y

yes? PLOT/T="1-JAN-1982":"1-JAN-1983" temp[X=160E:160W@MIN]

plots a time series of the minimum temperature found between longitudes 160 east and 160 west.

Ch3 Sec2.4.9. @MAX—maximum

The transformation @MAX finds the maximum value of the variable within the specified axis
range. See also @MIN. See General Information (p 90) for important details about this
transformation.

Ch3 Sec2.4.10. @SHF:n—shift

The transformation @SHF shifts the data up or down in subscript by the number of points given
as the argument. See General Information (p 90) for important details about this transformation.

Examples:

U[L=@SHF:2]

associates the value of U[L=3] with the subscript L=1.

U[L=@SHF:1]-U

gives the forward difference of the variable U along the L axis.

Ch3 Sec2.4.11. @SBX:n—boxcar smoother

The transformation @SBX applies a boxcar window (running mean) to smooth the variable along
the indicated axis. The width of the boxcar is the number of points given as an argument to the
transformation. All points are weighted equally, regardless of the sizes of the grid boxes, making
this transformation best suited to axes with equally spaced points. If the number of points

specified is even, however, @SBX weights the end points of the boxcar smoother as ½.. See
General Information (p 90) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0 u[L=1:120@SBX:5]

The transformation @SBX does not reduce the number of points along the axis; it replaces each of
the original values with the average of its surrounding points. Regridding can be used to reduce
the number of points.

Ch3 Sec2.4.12. @SBN:n—binomial smoother

The transformation @SBN applies a binomial window to smooth the variable along the indicated
axis. The width of the smoother is the number of points given as an argument to the
transformation. The weights are applied without regard to the widths of the grid boxes, making
this transformation best suited to axes with equally spaced points. See General Information (p 90)
 for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@SBN:15]

The transformation @SBN does not reduce the number of points along the axis; it replaces each of
the original values with a weighted sum of its surrounding points. Regridding can be used to
reduce the number of points. The argument specified with @SBN, the number of points in the
smoothing window, must be an odd value; an even value would result in an effective shift of the
data along its axis.

Ch3 Sec2.4.13. @SHN:n—Hanning smoother

Transformation @SHN applies a Hanning window to smooth the variable along the indicated axis
(ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al., 1986). In
other respects it is identical in function to the @SBN transformation. Note that the Hanning
window used by Ferret contains only non-zero weight values with the window width. Some
interpretations of this window function include zero weights at the end points. Use an argument of
N-2 to achieve this effect (e.g., @SBX:5 is equivalent to a 7-point Hanning window which has
zeros as its first and last weights). See General Information (p 90) for important details about this
transformation.

Ch3 Sec2.4.14. @SPZ:n—Parzen smoother

Transformation @SPZ applies a Parzen window to smooth the variable along the indicated axis
(ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al., 1986). In
other respects it is identical in function to the @SBN transformation. See General Information (p
90) for important details about this transformation.

Ch3 Sec2.4.15. @SWL:n—Welch smoother

Transformation @SWL applies a Welch window to smooth the variable along the indicated axis
(ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al., 1986). In
other respects it is identical in function to the @SBN transformation. See General Information (p
90) for important details about this transformation.

Ch3 Sec2.4.16. @DDC—centered derivative

The transformation @DDC computes the derivative with respect to the indicated axis using a
centered differencing scheme. The units of the underlying axis are treated as they are with
integrations. If the points of the axis are unequally spaced, note that the calculation used is still
(Fi+1 – Fi–1) / (Xi+1 – Xi–1) . See General Information (p 90) for important details about this
transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDC]

Ch3 Sec2.4.17. @DDF—forward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A forward
differencing scheme is used. The units of the underlying axis are treated as they are with
integrations. See General Information (p 90) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDF]

Ch3 Sec2.4.18. @DDB—backward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A backward
differencing scheme is used. The units of the underlying axis are treated as they are with
integrations. See General Information (p 90) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDB]

Ch3 Sec2.4.19. @NGD—number of good points

The transformation @NGD computes the number of good (valid) points of the variable with
respect to the indicated axis. Use @NGD in combination with @SUM to determine the number of
good points in a multi-dimensional region.

Note that, as with @VAR, when @NGD is applied simultaneously to multiple axes the
calculation is applied to the entire block of values rather than to the individual axes. See General
Information (p 90) for important details about this transformation.

Ch3 Sec2.4.20. @NBD—number of bad points

The transformation @NBD computes the number of bad (invalid) points of the variable with
respect to the indicated axis. Use @NBD in combination with @SUM to determine the number of
bad points in a multi-dimensional region.

Note that, as with @VAR, when @NBD is applied simultaneously to multiple axes the calculation
is applied to the entire block of values rather than to the individual axes. See General Information
(p 90) for important details about this transformation.

Ch3 Sec2.4.21. @SUM—unweighted sum

The transformation @SUM computes the unweighted sum (arithmetic sum) of the variable with
respect to the indicated axis. This transformation is most appropriate for regions specified by
subscript. If the region is specified in world coordinates, the edge points are not weighted—they
are wholly included in or excluded from the calculation, depending on the location of the grid
points with respect to the specified limits. See General Information (p 90) for important details
about this transformation.

Ch3 Sec2.4.22. @RSUM—running unweighted sum

The transformation @RSUM computes the running unweighted sum of the variable with respect
to the indicated axis. @RSUM is to @IIN as @SUM is to @DIN. The treatment of edge points is
identical to @SUM. See General Information (p 90) for important details about this
transformation.

Ch3 Sec2.4.23. @FAV:n—averaging filler

The transformation @FAV fills holes (values flagged as invalid) in variables with the average
value of the surrounding grid points along the indicated axis. The width of the averaging window
is the number of points given as an argument to the transformation. All of the surrounding points
are weighted equally, regardless of the sizes of the grid boxes, making this transformation best
suited to axes with equally spaced points. If the number of points specified is even, however,
@FAV weights the end points of the filling region by 1/2. If any of the surrounding points are
invalid they are omitted from the calculation. If all of the surrounding points are invalid the hole is
not filled. See General Information (p 90) for important details about this transformation.

Example:

yes? CONTOUR/X=160W:160E/Y=5S:0 u[X=@FAV:5]

Ch3 Sec2.4.24. @FLN:n—linear interpolation filler

The transformation @FLN:n fills holes in variables with a linear interpolation from the nearest
non-missing surrounding point. n specifies the number of points beyond the edge of the indicated

axis limits to include in the search for interpolants (default n = 1). Unlike @FAV, @FLN is
sensitive to unevenly spaced points and computes its linear interpolation based on the world
coordinate locations of grid points.

Any gap of missing values that has a valid data point on each end will be filled, regardless of the
length of the gap. However, when a sub-region from the full span of the data is requested
sometimes a fillable gap crosses the border of the requested region. In this case the valid data
point from which interpolation should be computed is not available. The parameter n tells Ferret
how far beyond the border of the requested region to look for a valid data point. See General
Information (p 90) for important details about this transformation.

Example: To allow data to be filled only when gaps in i are less than 15 points, use the @CIA
and @CIB transformations which return the distance from the nearest valid point.

yes? USE my_data
yes? LET allowed_gap = 15
yes? LET gap_size = my_var[i=@cia] + my_var[i=@cib]
yes? LET gap_mask = IF gap_size LE gap_allowed THEN 1
yes? LET my_answer = my_var[i=@fln) * gap_mask

Ch3 Sec2.4.25. @FNR:n—nearest neighbor filler

The transformation @FNR:n is similar to @FLN:n, except that it replicates the nearest point to
the missing value. In the case of points being equally spaced around the missing point, the mean
value is used. See General Information (p 90) for important details about this transformation.

Ch3 Sec2.4.26. @LOC—location of

The transformation @LOC accepts an argument value—the default value is zero if no argument is
specified. The transformation @LOC finds the single location at which the variable first assumes
the value of the argument. The result is in units of the underlying axis. Linear interpolation is used
to compute locations between grid points. If the variable does not assume the value of the
argument within the specified region the @LOC transformation returns an invalid data flag. See
also the discussion of @EVNT, the "event mask" transformation, (p. 106)

For example, temp[Z=0:200@LOC:18] finds the location along the Z axis (often depth in meters)
at which the variable "temp" (often temperature) first assumes the value 18, starting at Z=0 and
searching to Z=200. See General Information (p 90) for important details about this
transformation.

yes? CONTOUR/X=160E:160W/Y=10S:10N temp[Z=0:200@LOC:18]

produces a map of the depth of the 18-degree isotherm. See also the General Information about
transformations section in this chapter (p. 90).

Note that the transformation @LOC can be used to locate non-constant values, too, as the
following example illustrates:

Example: locating non-constant values

Determine the depth of maximum salinity.

yes? LET max_salt = salt[Z=@MAX]
yes? LET zero_at_max = salt - max_salt
yes? LET depth_of_max = zero_at_max[Z=@LOC:0]

Ch3 Sec2.4.27. @WEQ—weighted equal; integration kernel

The @WEQ ("weighted equal") transformation is the subtlest and arguably the most powerful
transformation within Ferret. It is a generalized version of @LOC; @LOC always determines the
value of the axis coordinate (the variable X, Y, Z, or T) at the points where the gridded field has a
particular value. More generally, @WEQ can be used to determine the value of any variable at
those points. See also the discussion of @EVNT, the "event mask" transformation (p. 106). See
General Information (p 90) for important details about this transformation.

Like @LOC, the transformation @WEQ finds the location along a given axis at which the
variable is equal to the given (or default) argument. For example, V1[Z=@WEQ:5] finds the Z
locations at which V1 equals "5". But whereas @LOC returns a single value (the linearly
interpolated axis coordinate values at the locations of equality) @WEQ returns instead a field of
the same size as the original variable. For those two grid points that immediately bracket the
location of the argument, @WEQ returns interpolation coefficients. For all other points it returns
missing value flags. If the value is found to lie identically on top of a grid point an interpolation
coefficient of 1 is returned for that point alone. The default argument value is 0.0 if no argument is
specified.

Example 1

yes? LET v1 = X/4
yes? LIST/X=1:6 v1, v1[X=@WEQ:1], v1[X=@WEQ:1.2]

X v1 @WEQ:1 @WEQ:1.2
___ _____ ______ ________

 1: 0.250
2: 0.500
3: 0.750
4: 1.000 1.000 0.2000
5: 1.250 0.8000
6: 1.500

The resulting field can be used as an "integrating kernel," a weighting function that when
multiplied by another field and summed will give the value of that new field at the desired
location.

Example 2

Using variable v1 from the previous example, suppose we wish to know the value of the function
X^2 (X squared) at the location where variable v1 has the value 1.2. We can determine it as
follows:

yes? LET x_squared = X^2
yes? LET integrand = x_squared * v1[X=@WEQ:1.2]
yes? LIST/X=1:6 integrand[X=@SUM] !Ferret output below
 X_SQUARED * V1[X=@WEQ:1.2]
 X: 1 to 6 (summed)
 23.20

Notice that 23.20 = 0.8 * (5^2) + 0.2 * (4^2)

Below are two "real world" examples that produce fully labeled plots.

Example 3: salinity on an isotherm

Use the Levitus climatology to contour the salinity of the Pacific Ocean along the 20-degree
isotherm (Figure 3_5).

yes? SET DATA levitus_climatology ! annual sub-surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean
yes? LET isotherm_20 = temp[Z=@WEQ:20] ! depth kernel for 20 degrees
yes? LET integrand_20 = salt * isotherm_20
yes? SET VARIABLE/TITLE="Salinity on the 20 degree isotherm" integrand_20
yes? PPL CONSET .12 !contour label size (def. .08)
yes? CONTOUR/LEV=(33,37,.2) integrand_20[Z=@SUM]
yes? GO fland !continental fill

Example 4: month with warmest sea surface temperatures

Use the COADS data set to determine the month in which the SST is warmest across the Pacific
Ocean. In this example we use the same principles as above to create an integrating kernel on the
time axis. Using this kernel we determine the value of the time step index (which is also the
month number, 1–12) at the time of maximum SST (Figure 3_6).

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig05.GIF

yes? SET DATA coads_climatology ! monthly surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean
yes? SET MODE CAL:MONTH
yes? LET zero_at_warmest = sst - sst[l=@max]
yes? LET integrand = L[G=sst] * zero_at_warmest[L=@WEQ] ! "L" is 1 to 12
yes? SET VARIABLE/TITLE="Month of warmest SST" integrand
yes? SHADE/L=1:12/PAL=inverse_grayscale integrand[L=@SUM]

Example 5: values of variable at depths of a second variable:

Suppose I have V1(x,y,z) and MY_ZEES(x,y), and I want to find the values of V1 at depths
MY_ZEES. The following will do that using @WEQ:

yes? LET zero_at_my_zees = Z[g=v1]-my_zees
yes? LET kernel = zero_at_my_zees[Z=@WEQ:0]
yes? LET integrand = kernel*v1
yes? LET v1_on_my_zees = integrand[Z=@SUM]

Ch3 Sec2.4.28. @ITP—interpolate

The @ITP transformation provides the same linear interpolation calculation that is turned on
modally with SET MODE INTERPOLATE but with a higher level of control, as @ITP can be
applied selectively to each axis. @ITP may be applied only to point locations along an axis. The

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig06.GIF

result is the linear interpolation based on the adjoining values. Interpolation can be applied on an
axis by axis and variable by variable basis like any other transformation. To apply interpolation
use the transformation "@ITP" in the same way as, say, @SBX, specifying the desired location to
which to interpolate. For example, on a Z axis with grid points at Z=10and Z=20 the syntax
my_var[Z=14@ITP] would interpolate to Z=14 with the computation

 0.6*my_var[Z=10]+0.4*my_var[Z=20].

 The example which follows illustrates the interpolation control that is possible using @ITP:

SET DATA coads_climatology
! with modal interpolation
SET MODE INTERPOLATE
LIST/L=1/X=180/Y=0 sst ! interpolates both lat and long
 SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 180E (interpolated)
 LATITUDE: 0 (interpolated)
 TIME: 16-JAN 06:00
 DATA SET: /home/ja9/tmap/fer_dsets/descr/coads_climatology.des
 28.36

! with no interpolation
CANCEL MODE INTERPOLATE
LIST/L=1/X=180/Y=0 sst ! gives value at 179E, 1S
 SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 179E
 LATITUDE: 1S
 TIME: 16-JAN 06:00
 DATA SET: /home/ja9/tmap/fer_dsets/descr/coads_climatology.des
 28.20

! using @ITP to interpolate in longitude, only
LIST/L=1/Y=0 sst[X=180@ITP] ! latitude remains 1S
 SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 180E (interpolated)
 LATITUDE: 1S
 TIME: 16-JAN 06:00
 DATA SET: /home/ja9/tmap/fer_dsets/descr/coads_climatology.des
 28.53

See General Information (p 90) for important details about this transformation.

Ch3 Sec2.4.29. @CDA—closest distance above

The transformation @CDA will compute at each grid point how far it is to the closest valid point
above this coordinate position on the indicated axis. The distance will be reported in the units of
the axis. If a given grid point is valid (not missing) then the result of @CDA for that point will be
0.0. See the example for @CDB below. The result's units are now axis units, e.g., degrees of
longitude to the next valid point above. See General Information (p 90) for important details
about this transformation, and see the example under @CDB below (p 105).

Ch3 Sec2.4.30. @CDB—closest distance below

The transformation @CDB will compute at each grid point how far it is to the closest valid point
below this coordinate position on the indicated axis. The distance will be reported in the units of
the axis. If a given grid point is valid (not missing) then the result of @CDB for that point will be
0.0. The result's units are now axis units, e.g., degrees of longitude to the next valid point below.
See General Information (p 90) for important details about this transformation.

Example:

yes? USE coads_climatology
yes? SET REGION/x=125w:109w/y=55s/l=1
yes? LIST sst, sst[x=@cda], sst[x=@cdb] ! results below

 Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
 Column 2: SST[X=@CDA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist
above on X ...)
 Column 3: SST[X=@CDB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist
below on X ...)

 SST SST SST
125W / 108: 6.700 0.000 0.000
123W / 109: 8.000 2.000
121W / 110: 6.000 4.000
119W / 111: 4.000 6.000
117W / 112: 2.000 8.000
115W / 113: 7.800 0.000 0.000
113W / 114: 7.800 0.000 0.000
111W / 115: 2.000 2.000
109W / 116: 8.300 0.000 0.000

Ch3 Sec2.4.31. @CIA—closest index above

The transformation @CIA will compute at each grid point how far it is to the closest valid point

above this coordinate position on the indicated axis. The distance will be reported in terms of the
number of points (distance in index space). If a given grid point is valid (not missing) then the
result of @CIA for that point will be 0.0. See the example for @CIB below. The units of the result
are grid indices; integer number of grid units to the next valid point above. See General
Information (p 90) for important details about this transformation, and see the example under
@CIB below (p 106).

Ch3 Sec2.4.32. @CIB—closest index below

The transformation @CIB will compute at each grid point how far it is to the closest valid point
below this coordinate position on the indicated axis. The distance will be reported in terms of the
number of points (distance in index space). If a given grid point is valid (not missing) then the
result of @CIB for that point will be 0.0. The units of the result are grid indices, integer number of
grid units to the next valid point below. See General Information (p 90) for important details
about this transformation.

Example:

yes? USE coads_climatology
yes? SET REGION/x=125w:109w/y=55s/l=1
yes? LIST sst, sst[x=@cia], sst[x=@cib] ! results below

 Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
 Column 2: SST[X=@CIA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist
above on X ...)
 Column 3: SST[X=@CIB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist
below on X ...)

 SST SST SST
125W / 108: 6.700 0.000 0.000
123W / 109: 4.000 1.000
121W / 110: 3.000 2.000
119W / 111: 2.000 3.000
117W / 112: 1.000 4.000
115W / 113: 7.800 0.000 0.000
113W / 114: 7.800 0.000 0.000
111W / 115: 1.000 1.000
109W / 116: 8.300 0.000 0.000

@EVNT--event mask

This transformation locates "events" in data. An event is the occurrence of a particular value. The
output steps up by a value of 1 for each event, starting from a value of zero. (If the variable takes
on exactly the value of the event trigger the +1 step occurs on that point. If it crosses the value,

either ascending or descending, the step occurs on the first point after the crossing.)

For example, if you wanted to know the maximum value of the second wave, where (say) rising
above a magnitude of 0.1 in variable "ht" represented the onset of a wave, then

yes? LET wave2_mask = IF ht[T=@evnt:0.1] EQ 2 THEN 1

is a mask for the second wave, only. The maximum waveheight may be found with

yes? LET wave2_ht = wave2_mask * ht
yes? LET wave2_max_ht = wave2_ht[T=@max]

Note that @EVNT can be used together with @LOC and @WEQ to determine the location when
an event occurs and the value of other variables as the event occurs, respectively. Since there may
be missing values in the data, and since the instant at which the event occurs may lie immediately
before the step in value for the event mask, the following expression is a general solution.

yes? LET event_mask = my_var[t=@evnt:<value>]
yes? LET event_n = IF ABS(MISSING(event_mask[L=@SBX],event_mask)-n) LE 0.67
THEN my_var

So that

event_n[t=@LOC:<value>]

is the time at which event "n" occurs, and

event_n[t=@WEQ:<value>]

is the integrating kernel (see @WEQ)

Ch3 Sec2.5. IF-THEN logic ("masking")

Ferret expressions can contain embedded IF-THEN-ELSE logic. The syntax of the IF-THEN logic
is simply (by example)

LET a = IF a1 GT b THEN a1 ELSE a2

(read as "if a1 is greater than b then a1 else a2").

This syntax is especially useful in creating masks that can be used to perform calculations over
regions of arbitrary shape. For example, we can compute the average air-sea temperature

difference in regions of high wind speed using this logic:

SET DATA coads_climatology
SET REGION/X=100W:0/Y=0:80N/T=15-JAN
LET fast_wind = IF wspd GT 10 THEN 1
LET tdiff = airt - sst
LET fast_tdiff = tdiff * fast_wind

We can also make compound IF-THEN statements. The parentheses are included here for clarity,
but are not necessary.

LET a = IF (b GT c AND b LT d) THEN e

LET a = IF (b GT c OR b LT d) THEN e

LET a = IF (b GT c AND b LT d) THEN e ELSE q

The user may find it clearer to think of this logic as WHERE-THEN-ELSE to aviod confusion
with the IF used to control conditional execution of commands. Compound and multi-line IF-
THEN-ELSE constructs are not allowed in embedded logic.

Ch3 Sec2.6. Lists of constants ("constant arrays")

The syntax {val1, val2, val3} is a quick way to enter a list of constants. For example

yes? LIST {1,3,5}, {1,,5}
 X: 0.5 to 3.5
 Column 1: {1,3,5}
 Column 2: {1,,5}
 {1,3,5} {1,,5}
1 / 1: 1.000 1.000
2 / 2: 3.000
3 / 3: 5.000 5.000

Note that a constant variable is always an array oriented in the X direction To create a constant
aray oriented in, say, the Y direction use YSEQUENCE

yes? STAT/BRIEF YSEQUENCE({1,3,5})

 Total # of data points: 3 (1*3*1*1)
 # flagged as bad data: 0
 Minimum value: 1
 Maximum value: 5
 Mean value: 3 (unweighted average)

Below are two examples illustrating uses of constant arrays. (See the constant_array_demo
journal file)

Ex. 1) plot a triangle (Figure 3_7)

LET xtriangle = {0,.5,1}
LET ytriangle = {0,1,0}
POLYGON/LINE=8 xtriangle, ytriangle, 0

Or multiple triangles (Figure 3_8) See polymark.jnl regarding this figure

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig07.GIF

Ex. 2) Sample Jan, June, and December from sst in coads_climatology

yes? USE coads_climatology
yes? LET my_sst_months = SAMPLEL(sst, {1,6,12})
yes? STAT/BRIEF my_sst_months

Total # of data points: 48600 (180*90*1*3)
flagged as bad data: 21831
Minimum value: -2.6
Maximum value: 31.637
Mean value: 17.571 (unweighted average)

Ch3 Sec3. EMBEDDED EXPRESSIONS

Ferret supports "immediate mode" mathematical expressions—that is, numerical expressions that

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch3_fig08.GIF

may be embedded anywhere within a command line. These expressions are evaluated immediately
by Ferret—before the command itself is parsed and executed. Immediate mode expressions are
enclosed in grave accents, the same syntax used by the Unix C shell. Prior to parsing and
executing the command Ferret will replace the full grave accent expression, including the accent
marks, with an ASCII string representing the numerical value. For example, if the given command
is

CONTOUR/Z=`temp[X=180,Y=0,Z=@LOC:15]` salt

Ferret will evaluate the expression "temp[X=180,Y=0,Z=@LOC:15]" (the depth of the 15-degree
isotherm at the equator/dateline—say, it is 234.5 meters). Ferret will generate and execute the
command

CONTOUR/Z=234.5 salt

Embedded expressions:

Embedded expressions: the expression must evaluate to a single number, a scalar, or Ferret will
respond that the command contains an error. If the result is invalid the numerical string will be
"bad" (see BAD= in following section, p. 111). Region qualifiers that begin a command
containing an embedded expression will be used in the evaluation of the expression. If multiple
embedded expressions are used in a single command they will be evaluated from left to right
within the command. This means that embedded expressions used to specify region information
(e.g., the above example) may influence the evaluation of other embedded expressions to the right.
When embedded expressions are used within commands that are arguments of a REPEAT
command their evaluation is deferred until the commands are actually executed. Thus the
embedded expressions are re-evaluated at each loop index of the REPEAT command. Grave
accents have a higher priority than any other syntax character. Thus grave accent expressions will
be evaluated even if they are enclosed within quotation marks, parentheses, square brackets, etc.
Substitutions based on dollar-signs (command script arguments and symbols) will be made before
embedded expressions are evaluated. A double grave accent will be translated to a single grave
accent and not actually evaluated. Thus double grave accents provide a mechanism to defer
evaluation so that grave accent expressions may be passed to the Unix command line with the
SPAWN command or may be passed as arguments to GO scripts (to be evaluated INSIDE the
script). The state of MODE VERIFY will determine if the evaluation of the embedded expression
is echoed at the command line—similar to REPEAT loops.

The grave accent syntax may also be used to force immediate evaluation and substitution of a
string variable in a command. Note that since region qualifiers that begin a command containing
an embedded expression are used in the evaluation of the expression, the string variable may not
contain a region qualifier.

Ch3 Sec3.1. Special calculations using embedded expressions

By default Ferret formats the results of embedded expressions using 5 significant digits. If the
result of the expression is invalid (e.g., 1/0) the result by default is the string "bad". Controls allow
you to specify the formatting of embedded expression results in both valid and invalid cases and
to query the size and shape of the result.

The syntax to achieve this control is KEYWORD=VALUE pairs inside the grave accents,
following the expression and set off by commas. The recognized keywords are "BAD=",
"PRECISION=", and "RETURN=". Only the first character of the keyword is significant, so they
may be abbreviated as "B=", "P=", and "R=".

PRECISION=, BAD=, and RETURN= may be specified simultaneously, in any order, separated
by commas. If RETURN= is included, however, the other keywords will be ignored.

PRECISION=#digits

can be used to control the number of significant digits displayed, up to a maximum of 10 (actually
at most 7 digits are significant since Ferret calculations are performed in single precision). Ferret
will, however, truncate terminating zeros following the decimal place. Thus

SAY `3/10,PRECISION=7`

will result in

0.3

instead of 0.3000000.

If the value specified for #digits is negative Ferret will interpret this as the desired number of
decimal places rather than the number of significant digits. Thus

SAY `35501/100,P=-2`

will result in

355.01

instead of 355.

In the case of a negative precision value, Ferret will again drop terminating zeros to the right of
the decimal point.

Note that the precision of the embedded expression is used as the command is parsed, and any
precision controls in the rest of the command are applied later. So

 LIST/PRECISION=10 `100000000 + 12345`

will result in

W= ZW= set width and set zero-filled width.

Formatting immediate mode expressions may be done by specifying the width or zero-filled
width:

yes? SAY Answer: `5.3,w=8`
Answer: 5.3
yes? SAY Answer: `5.3,zw=8`
Answer: 000005.3

BAD=string

can be used to control the text which is produced when the result of the immediate mode
expression is invalid. Thus

SAY `1/0,BAD=missing`

will result in

missing

or

SAY `1/0,B=-999`

will result in

-999

RETURN=

The keyword RETURN= can reveal the size and shape of the result. RETURN= may take
arguments

● SHAPE
● ISTART, JSTART, KSTART, or LSTART
● IEND, JEND, KEND, or LEND

● XSTART, YSTART, ZSTART, or TSTART
● XEND, YEND, ZEND, or TEND
● SIZE
● ISIZE, JSIZE, KSIZE, LSIZE
● BAD
● T0
● UNITS
● IUNITS, JUNITS, KUNITS, LUNITS
● XUNITS, YUNITS, ZUNITS, TUNITS
● TITLE
● GRID
● IAXIS, JAXIS, KAXIS, or LAXIS
● XAXIS, YAXIS, ZAXIS, or TAXIS
● DSET, DSETNUM, DSETPATH

The RETURN= option in immediate mode expressions does not actually compute the result unless
it must. For example, the expression

 `sst, RETURN=TEND`

will return the formatted coordinate for the last point on the T axis of variable sst without actually
reading or computing the values of sst. This allows Ferret scripts to be constructed so that they can
anticipate the size of variables and act accordingly.

Note that this does not apply to variable definitions which involve grid-changing variables that
return results on ABSTRACT axes. For those variables the size and shape of the result may
depend on data values, so the entire result must be computed in order to determine many of the
return= attributes

RETURN=SHAPE

Returns the 4-dimensional shape of the result—i.e., a list of those axes along which the result
comprises more than a single point. For example, a global sea surface temperature field at a
 single point in time:

SAY `SST[T=1-JAN-1983],RETURN=SHAPE`

will result in

XY

See Symbol Substitutions in the chapter "Handling String Data" (p. 203) for examples showing
the special utility of this feature.

RETURN=ISTART (and similarly JSTART, KSTART, and LSTART)

Returns the starting index of the result along the indicated axis: I, J, K, or L. For example, if
CAST is a vertical profile with points every 10 meters of depth starting at 10 meters then Z=100 is
the 10th vertical point, so

SAY `CAST[Z=100:200],RETURN=KSTART`

will result in

10

RETURN=IEND (and similarly JEND, KEND, and LEND)

Returns the ending index of the result along the indicated axis: I, J, K, or L. In the example above

SAY `CAST[Z=100:200],RETURN=KEND`

will result in

20

The size and shape information revealed by RESULT= is useful in creating sophisticated scripts.
For example, these lines could be used to verify that the user has passed a 1-dimensional field as
the first argument to a script

LET my_expr = $1
DEFINE SYMBOL SHAPE `my_expr,RESULT=SHAPE`
QUERY/IGNORE ($SHAPE%|X|Y|Z|T|<Expression must be 1-dimensional%)

RETURN=XSTART (and similarly YSTART, ZSTART, and TSTART)

Returns start of specified world coordinate region

RETURN=XEND (and similarly YEND, ZEND, and TEND)

 Returns end of specified world coordinate region

RETURN=SIZE

Returns the total number of points in the variable -- Nx*Ny*Nz*Nt

RETURN=ISIZE (and similarly JSIZE, KSIZE, LSIZE

Returns the number of points along one axis.

RETURN=BAD

Returns the missing value flag from the expression

RETURN=T0

Returns the T0 string from the time axis

RETURN=UNIT

Returns the units string from the variable

RETURN=XUNIT (and similarly YUNIT, ZUNIT, and TUNIT)

Returns the units string from the axis

RETURN=IUNIT (and similarly JUNIT, KUNIT, and LUNIT)

Returns the units string from the axis

Example:

yes? say `sst, RETURN=UNIT`

 !-> MESSAGE/CONTINUE Deg C

yes? say `sst, RETURN=TUNIT`

 !-> MESSAGE/CONTINUE DAYS

RETURN=TITLE

Returns the title of a variable

RETURN=GRID

Returns the grid name of a variable

RETURN=IAXIS (and similarly JAXIS, KAXIS, and LAXIS)

Returns the name of an axis on which the variable is defined.

RETURN=XAXIS (and similarly YAXIS, ZAXIS, and TAXIS)

Returns the name of an axis on which the variable is defined.

RETURN=DSET, DSETNUM, DSETPATH

Returns data set information from the expression.

Ch3 Sec4. DEFINING NEW VARIABLES

The ability to define new variables lies at the heart of the computational power that Ferret
provides. Complex analyses in Ferret generally proceed as hierarchies of simple variable
definitions. As a simple example, suppose we wish to calculate the root mean squared value of
variable, V, over 100 time steps. We could achieve this with the simple hierarchy of definitions:

LET v_rms = v_mean_sq ^ 0.5
LET v_mean_sq = v_squared[L=@AVE]
LET v_squared = v * v
SET VARIABLE/TITLE="RMS V" v_rms

LIST/L=1:100 v_rms

(listed output not included)

As the example shows, the variables can be defined in any order and without knowledge in
advance of the domain over which they will be evaluated. As variable definitions are given to
Ferret with the LET (alias for DEFINE VARIABLE) command the expressions are parsed but not
evaluated. Evaluation occurs only when an actual request for data is made. In the preceding
example this is the point at which the LIST command is given. At that point Ferret uses the
current context (SET REGION and SET DATA_SET) and the command qualifiers (e.g.,
"L=1:100") to determine the domain for evaluation. Ferret achieves great efficiency by evaluating
only the minimum subset of data required to satisfy the request.

One consequence of this approach is that definitions such as

LET a = a + 1 ! nonsense

are nonsense within Ferret. The value(s) of variable "a" come into existence only as they are
called for, thus it is nonsense for them to appear simultaneously on the left and right of an equal
sign.

Variable names can be 1 to 24 characters in length and begin with a letter. See the command
reference DEFINE VARIABLE (p. 301) for the available qualifiers.

Ch3 Sec4.1. Global, local, and default variable definitions

All of the above definitions are examples of "global variable definitions." A global variable
definition applies to all data sets. In the above example the expression "v_rms[D=dset_1]" would
be based on the values and domain of the variable V from data set dset_1 and "v_rms[D=dset_2]"
would similarly be drawn from data set dset_2. The domain of v_rms, its size, shape, and
resolution, will depend on the particular data set in which it is evaluated.

Although global variables are simple to use they can lead to ambiguities. Suppose, for example,
that data sets dset_1 and dset_2 contain the following variables:

Dset_1 dset_2
______ ______
speed u, v

If we would like to compare speeds from the two data sets we might be tempted to define a new
variable, speed, as

LET speed = (u*u + v*v)^0.5

In doing so, however, we create an ambiguity of interpretation for the expression
"speed[d=dset_1]".

To avoid this ambiguity we need to create a variable definition, "speed," that is local to data set
dset_2. The qualifier /D= used as follows

LET/D=dset_2 speed = (u*u + v*v)^0.5 ! in dset_2, only

provides this capability. The use of /D=dset_2 indicates that this new definition of "speed" applies
only to data set dset_2.

A convenient shortcut is often to define a "default variable." A default variable is defined using
the /D qualifier with no argument

LET/D speed = (u*u + v*v)^0.5 ! where "speed" doesn't already exist

As a default variable "speed" is a definition that applies only to data sets that would otherwise not
posses a variable named speed. In this sense it is a fallback default.

Ch3 Sec5. DEBUGGING COMPLEX HIERARCHIES OF
EXPRESSIONS

A complex analysis generally proceeds within Ferret as a complex hierarchy of expressions:
variables defined in terms of other variables defined in terms of other variables, etc., often
containing many levels of transformation. When an error message such as "can only contour or
vector a 2D region" occurs it may appear difficult to locate the reason for this message.

A simple strategy to locate the source of such problems is to use the command STAT which
shows the size and shape of variables and expressions (simply edit the offending command line,
replacing the PLOT, CONTOUR, VECTOR, etc. command with STAT and eliminating qualifiers
if necessary) and use SHOW VARIABLE to see the variable definitions. By repeatedly using
STAT to examine the component variables of definitions one can quickly locate the source of the
problem.

Chapter 4: GRIDS AND REGIONS

Ch4 Sec1. OVERVIEW

Information describing a region in space/time, a data set, and a grid is collectively referred to as the "context."
The current context may be examined with the commands SHOW DATA_SET, SHOW REGION, and SHOW
GRID. The context may be set explicitly with the commands SET DATA_SET, SET REGION, and SET
GRID.

The context may be modified for the duration of a single command with qualifiers to the command name
(separated by slashes). The same qualifiers in square brackets may also modify single variables, changing the
context only of that variable:

yes? PLOT/D=levitus_climatology temp, salt

yes? CONTOUR rose[D=etopo20]

yes? FILL/Z=0 temp[L=2] - temp[L=1]

Ch4 Sec2. GRIDS

Every variable has an underlying grid which defines a coordinate space. All grids are in a sense 4 dimensional
(X, Y, Z, and T) but axes normal to the data are represented as "normal" (such as the Z axis of the surface
wind stress).

Grids can be viewed, specified and created using SHOW GRID, SET GRID, DEFINE AXIS, and DEFINE
GRID. These commands are all in the Commands Reference section of this manual. Data can be regridded by
the G= modifier. (See this chapter, section "Regridding," p. 126)

Ch4 Sec2.1. Defining grids

Axes and grids can be explicitly created by DEFINE AXIS and DEFINE GRID. NetCDF and TMAP-
formatted data set variables have all of the necessary grid and axis definitions embedded in the data set files,
but if you are reading data from an ASCII or binary file, you must tell Ferret about the underlying grid of your
data.

If you are creating abstract expressions entirely from pseudo-variables, you may want to define a grid in order
to define the coordinate space of your calculation. This will also help produce a nicely labeled plot. (See the
chapter "Variables and Expressions", "Grids and axes of pseudo-variables" (p. 56) and the example in the
section on "Abstract Variables," p. 59.)

Example

This example is taken from the demonstration script "file_reading_demo.jnl". An ASCII file contains a grid of
numbers, 50 rows by 6 columns. Suppose the data are on a 2D grid of 6 longitudes by 50 latitudes (Figure
4_1).

yes? DEFINE AXIS/X=10E:60E:10/UNIT=DEGREE xlong
yes? DEFINE AXIS/Y=0:49N:1/UNIT=DEGREE ylat
yes? DEFINE GRID/X=xlong/Y=ylat gsnoopy2d
! By default only 1 column is read, /COLUMNS= specifies 6 columns
yes? FILE/VAR=my_2D_var/COL=6/GRID=gsnoopy2d snoopy.dat
yes? CONTOUR my_2D_var

Ch4 Sec2.2. Time axes and calendars

Data, particularly outputs from models, may be defined with time axes that are not on the standard Gregorian
calendar. The NetCDF conventions document discusses and defines usage for different calendars. These
conventions for calendars are implemented in Ferret version 5.3 See:

http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-current.htm

NetCDF conforms to the conventions in the UDUNITS software package

http://www.unidata.ucar.edu/packages/udunits/

The default calendar in Ferret is the Gregorian calendar. This is implemented as a "proleptic" calendar, where
the definition of a year is consistent throughout time and does not have an offset in the 1500's as the historical
calendars did. However, files written using the NOAA/CDC standard for the "blended" Julian/Gregorian
calendar are read correctly by Ferret.

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch4_fig01.GIF
http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-current.htm#_TN_Ref_viewaxes_b
http://www.unidata.ucar.edu/packages/udunits/

Other calendars may be defined using DEFINE AXIS/CALENDAR= or by reading a variable with a calendar
attribute from a NetCDF file. You can set the calendar type in a descriptor file, with the D_CALTYPE
attribute.

Example:

 $BACKGROUND_RECORD
 D_TITLE = 'Model Output, Daily Averages',
 D_T0TIME = '30-DEC-0000 00:00:00',
 D_TIME_UNIT = 3600.,
 D_CALTYPE = 'NOLEAP',
$END

The calendars that are defined for use in Ferret are

calendar name number of days/year notes

GREGORIAN or STANDARD 365.2425 default calendar

JULIAN 365.25 with leap years

NOLEAP 365 no leap years

360_DAY 360 each month is 30 days

Calendar names are matched using the first three characters.

Example:

Define a calendar axis and regrid an existing variable to this axis:

yes? DEFINE AXIS/CALENDAR=JULIAN/T="15-JAN-1982":"15-DEC-1985":30/UNITS=days tmodel
yes? LET twind = uwnd[GT=tmodel@NRST]

Regridding between different calendars is allowed using the transformations @LIN (the default), @ASN, or
@NRST. When regridding with @LIN from one calendar axis to another the length of a year is assumed to be
constant, therefore the regridding calculates a scale factor based on the length of a second in each calendar,
computed from the number of seconds per year for the calendars.

Ch4 Sec2.3. Dynamic grids and axes

The commands DEFINE AXIS and DEFINE GRID, described in the preceding section, should be used when
the grid or axis will be referenced more than once and/or shared among several variables. In many cases it is
more convenient to use dynamic (a.k.a. "implicit") grids and axes. Two quick examples:

PLOT SIN(X[X=0:3.14:.1])

 – dynamically creates an axis from 0 to 3.14 by 0.1

SHADE SST[X=140E:160W:5, D=coads_climatology]

– dynamically creates a longitude axis extending from 140E to 160W by 5 degrees, dynamically creates a
grid which is like the grid upon which the variable SST is defined but with the X axis replaced by the new
dynamic axis, and automatically regrids to this new grid.

Ch4 Sec2.3.1. Dynamic grids

It is often possible to avoid explicitly defining grids. This is useful in two common situations:

● Situation 1

Regridding to specified axes without the need for defining the destination grid.

Syntax: G*=name@transform, where

* – The orientation of the axis to be regridded: "X," "Y," "Z," or "T"

name – The name of an axis or of another variable defined on the desired axis

@transform – The (optional) name of a regridding transform

 Example:

sst[GX=x10deg]

Suppose the variable SST is defined on a 2×2 degree grid in latitude/longitude (e.g., SET DATA
coads_climatology). If we wish to regrid to 10-degree spacing in longitude over a range from 175W to 75W
we could use the commands

 DEFINE AXIS/X=175w:75w:10/UNITS=degrees x10deg
 LET sst10 = sst[GX=x10deg]

Several axes can be specified together when they are to be regridded similarly. For example, instead of
sst[GX=x10deg, GY=x10deg] one can use the more concise sst[GXY=x10deg]

Similarly, av_sst[GZ=@AVE, GT=@AVE] can be condensed to av_sst[GZT=@AVE]

Ferret will dynamically create a grid equivalent to new_grid in

 DEFINE GRID/LIKE=sst/X=x10deg new_grid.

Figure 4_2 shows the effects of regridding the 2×2 degree COADS data to a 10-degree spacing in longitude
using (default) linear interpolation.

The command SHOW GRID SST10 will show the dynamically created grid. The names of dynamic grids and
axes will always be displayed in parentheses.

Note that the transformation method to be used for regridding may also be specified, so LET SST10 =
SST[GX=x10deg@ave] would create a 10-degree spaced result in which each grid point was computed as the
weighted sum of the source points that fell within its grid box. The default method for regridding is linear
interpolation.

• Situation 2

Automatic reconciliation of incompatible grid shapes

Syntax: G=name@transform ,where

name – The name of a grid or of another variable defined on the desired grid

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch4_fig02.GIF

@transform – The (optional) name of a regridding transform

Example:

 VAR1[g=VAR2]

If two variables are defined on grids that are mutually non-conformable because axes exist in one grid but do
not exist (are NORMAL) in another, Ferret will now create a dynamic grid to resolve the non-conformabilities.
This means that an expression of the form VAR1[G=VAR2] will be meaningful as long as the grid domains
overlap.

For example, TEMP[d=levitus_climatology] is defined on an XYZ (time-independent) grid whereas
SST[d=coads_climatology] is defined on an XYT grid. So to evaluate the expression
SST[d=coads_climatology,G=TEMP[d=levitus_climatology]] Ferret will create a dynamic intermediate grid
equivalent to

 DEFINE GRID/LIKE=sst[D=coads_climatology]/X=temp/Y=temp

so that regridding occurs on the X and Y axes but the original grid structure is maintained with respect to depth
and time.

The command SHOW GRID will reveal the resulting dynamically created grid structure.

Ch4 Sec2.3.2. Dynamic axes

The syntax "GX=lo:hi:delta" can be used in square brackets modifying a variable name to indicate the dynamic
creation of an axis with the indicated range and spacing and the immediate regridding of the variable to a grid
containing that axis. For example, SST[GX=175W:75W:10] will create a dynamic axis of 10-degree regular
point spacing, will create a dynamic grid incorporating this axis (see previous section), and will regrid the
variable SST to this grid.

Similarly, by referring to the grid indices rather than their world coordinates, the expression SST[GX=1:100:5]
will create a dynamic axis that subsamples every 5th longitude point from SST. In this case the points of the
resulting axis may be irregularly spaced if the points of the original axis were also irregular.

As with the dynamic regridding described above, transformations can be specified to indicate the regridding
technique. Thus SST[GX=1:100:5@AVE] will use averaging instead of the default linear interpolation to
perform the regridding.

As a notational convenience the "G" may be dropped when referring to dynamic axes. Thus
SST[X=175W:75W:10] is equivalent to SST[GX=175W:75W:10] and SST[I=1:100:5@AVE] is equivalent to
SST[GX=1:100:5@AVE]. When using this notational convenience keep in mind that a regridding is taking
place, so the transformation applied (if any) must be a regridding transformation (see SHOW TRANSFORMS

in the command reference section, p. 375).

The lower plot of Figure 4_2 illustrates the effect of dynamic axes in the command

SHADE SST[GX=175W:75W:10]

Ch4 Sec2.3.3. Dynamic pseudo-variables

The same notation used for dynamic axes may also be applied to pseudo-variables providing a simple means
for creating arrays of values. For example, X[GX=0.2:1:0.2] is a vector of 5 points from 0.2 to 1 at a regular
spacing of 0.2 units. The vector is oriented in the X direction.

An example of using such a vector is (Figure 4_3)

PLOT SIN(X[GX=0:3.14:.1])

Note that when the lo:high:delta notation is applied to T or L expressed as calendar dates the units of the delta
value will be hours. For example, L[GT=1-jan-1980:1-feb-1980:24] is the integers 1 to 32 defined on an axis
of 32 days, 24 hours apart.

As a notational convenience the "G" may be dropped when referring to dynamic pseudo-variables. Thus
X[X=0.2:1:0.2] is equivalent to X[GX=0.2:1:0.2].

See also the discussion of grids for pseudo-variables in section 3.1.3, p. 56.

Ch4 Sec2.4. Regridding

Syntax:

 var[G=name] for (default) linear interpolation to new grid

or

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch4_fig03.GIF

 var[G=name@trn] to regrid all axes using transform "trn" (see below)

or

 var[G=name,GX=@TRN,GY=@TRN,...] to control regridding transformations along each axis
separately

where

var is the name of the variable to be regridded (e.g., temp, u, tau, ...)

name is the name of a variable (e.g., temp[G=u]) or the name of a grid (e.g., temp[G=gu01])

trn is the name of a special transformation (e.g., @AVE, @ASN, @LIN)

The syntax var[G=name,GX=@TRN,GY=@TRN,...] can be compressed when specifying that several
axes are to be regridded similarly. For example, instead of
 var[GX=sst, GY=SST]
one can now use the more concise
 var[GXY=sst]

Similarly, if using a regridding transformation,
 var[GZ=@AVE, GT=@AVE]
can be condensed to
 var[GZT=@AVE]

Note that in Ferret Version 5 and after when the limits of a variable are unspecified v2[g=v1] will default to
the full extent of the v1 grid. Previously, it would become the size of whatever region of the v2 native grid
overlapped with the v1 grid.

The Ferret distribution provides a demonstration of many regridding techniques:

yes? GO regridding_demo

Regridding is essential for algebraic operations that combine variables on incompatible grids. Ferret provides
the commands DEFINE AXIS and DEFINE GRID to assist with the creation of arbitrary grids.

The result grid of a regridding operation does not necessarily match exactly the destination grid requested. For
example, suppose the native grid of variable TEMP3D (Ocean Temperature) is 1 degree resolution in X and Y
and 50 meter spacing in Z. If the syntax "[G=sst]" is used to request regridding to the grid of variable SST (Sea
Surface Temperature), which is 2 degree resolution in X and Y, but normal to Z, then the resulting grid will be
generated dynamically— inheriting X and Y axes from SST as requested, but retaining the Z axis of TEMP3D.

Examples

1) Suppose the variables u and temp are on staggered X, Y, and Z axes but share the same T axis. Then the
two variables can be multiplied together on the axes (grid) of the u variable as follows:

yes? CONTOUR u * temp[G=u]

This will regrid temp onto the u grid by multi-axis linear interpolation before performing the multiplication.

2) Two variables, v1 and v2, are defined on distinct 4-dimensional grids (X, Y, Z, and T axes). The T axes of
the two grids are identical but the X, Y, and Z axes all differ between the two variables. (This is often the case
in numerical model outputs.)

To obtain the variable v1 on its original Z (depth) locations but regridded in the XY plane to the grid locations
of the variable v2, define a new grid (say, named "new_grid") that has the X and Y axes of v2 but the Z axis of
v1.

yes? DEFINE GRID/LIKE=v2/Z=v1 new_grid !define new grid
yes? LIST/X=160E:140W/Y=5S:5N v1[G=new_grid] !request regridding

3) In this example we look at temperature data from two data sets. levitus_climatology, an annual
climatology, has the variable "temp" on an XYZ grid which is 1×1 degree in XY, and coads_climatology, a
monthly climatology, has the variable "sst" on an XYT grid which is 2×2 degrees in XY. Suppose we wish to
look at the sea surface temperatures in January at the higher XY resolution of the Levitus data.

yes? SET DATA levitus_climatology
yes? SET DATA coads_climatology
yes? SET REGION/L=1/Z=0
yes? !get the name of the grid on which temp is defined
yes? SHOW GRID temp[D=levitus_climatology] ! —> "Glevitr1"
yes? DEFINE GRID/X=glevitr1/Y=glevitr1/Z=sst/L=sst glevitus_xy
yes? LIST/X=150E:155E/Y=0:5N sst[G=glevitus_xy]

Ch4 Sec2.4.1. Regridding transformations

Ferret supports several regridding transformations. Use the SHOW TRANSFORMATIONS command to
obtain a list of the supported transformations from Ferret. The choice of regridding transformation determines
the computation by which data from the source grid determine the values on the destination grid.

Regridding transformations provide a means to perform a given calculation over a limited span of coordinates

and repeat that calculation for a series of contiguous spans. For example, if we wish to compute the variance of
the variable SST over 10-degree longitude range from 180 to 170W we could use the syntax
sst[X=180:170w@VAR]. Now, if we wish to perform the same operation 10 times in 10-degree wide bands
from 180 to 80W we could instead use G=@VAR regridding as in (see Dynamic Grids, p. 122, for an
explanation of the "GX=" syntax):

DEFINE AXIS/X=175w:85w:10/UNITS=degrees ×10deg
LET sst10 = sst[GX=x10deg@VAR]

The regridding transformations are:

@LIN—linear interpolation (the default if no transform is specified)

Performs regridding by multi-axis linear interpolation.

@AVE—averaging

Computes the length-weighted average of all points on the source grid that lie partly or completely within each
grid cell of the destination grid.

Note: When @AVE is applied simultaneously to the X and Y axes, where X and Y are longitude and latitude,
respectively, an area-weighted average (weighted by cos(latitude)) is used. The @AVE transformation is
unique in this respect. In multiple axis applications other than X and Y @AVE will be applied sequentially to
the axes, computing the "average of the average." This may not be the desired weighting scheme in some
cases. See @VAR below for an example.

@ASN—(blind) association

Associates by subscript (blindly) the points from the source grid onto destination coordinates.

@VAR

Computes the variance of the points from the source grid that fall within each destination grid cell. This is a
length-weighted computation like the @AVE transformation.

Note: This transformation is suitable for regridding only in a single axis. When applied simultaneously to two
axes, for example, it will compute the variance of the variance. For example, V[gx=130E:80W:10@VAR,
gy=205:20W:10@VAR] is equivalent to tmp[X=130E:80W:10@VAR] where tmp=V[y=20S:20N:10@VAR].

@NGD

Compute the number of points from the source grid that fall within each destination grid cell. Note that the
results of this calculation need not be integers—this is a length-weighted computation like the @AVE
transformation. It is common for a grid cell on the source grid to span the boundary between grid cells on the
destination grid, thereby contributing a fraction of its weight to multiple destination grid cells.

Note: This transformation is suitable only for regridding on a single axis. When applied simultaneously to two
axes, for example, it will compute a constant. See @VAR for an example.

@NRST

Nearest coordinate regridding VAR[GX=newaxis@NRST] chooses the value from the source axis coordinate
closest to the destination axis. If source coordinates above and below are equally close to a destination
coordinate the value at the lower coordinate will be chosen. (This is most useful for regridding between axes
whose coordinate values are very close, though not exactly matched -- e.g. between equally and unequally
spaced monthly time axes.)

@SUM

Computes the length-weighted sum of the points from the source grid that fall within each destination grid cell.
This is a length-weighted computation like the @AVE transformation.

@MIN

Finds the minimum value of those points from the source grid that lie within each destination grid cell. Note
that this is NOT a weighted calculation; the destination grid cell that "owns" a source point is determined
entirely from the coordinate location of the source point, not from the limits of the source grid cell.

 (As of Ferret V5.1) If a point on the source axis lies exactly on the boundary between grid cells on the
destination axis it will be included in the calculations for the higher indexed cell on the destination axis. If a
point on the source axis lies exactly on the upper cell boundary of the highest point on the destination axis,
then it will be included in the calculations for that highest destination grid cell.

If you have data on a single point axis and you wish to embed it in a larger axis range you can achieve this by
using either the G=@MIN or G=@MAX. For example,

yes? define axis/x=163e/npoints=1 x1pt
yes? let var_1pt = randu(x[gx=x1pt]) ! a random value at a single coordinate
yes? list var_1pt
 RANDU(X[GX=X1PT])
 LONGITUDE: 163E
 0.4914
yes? define axis/x=161e:165e:1 x5pt
yes? list var_1pt[gx=x5pt@max] ! same value embedded within 5 point axis
 RANDU(X[GX=X1PT])
 regrid: 1 deg on X@MAX
161E / 1:
162E / 2:
163E / 3: 0.4914
164E / 4:
165E / 5:

@MAX

Finds the maximum value of those points from the source grid that lie within each destination grid cell. Note

that this is NOT a weighted calculation; the destination grid cell that "owns" a source point is determined
entirely from the coordinate location of the source point, not from the limits of the source grid cell..

 (As of Ferret V5.1) If a point on the source axis lies exactly on the boundary between grid cells on the
destination axis it will be included in the calculations for the higher indexed cell on the destination axis. If a
point on the source axis lies exactly on the upper cell boundary of the highest point on the destination axis,
then it will be included in the calculations for that highest destination grid cell.

The @MAX transformation is useful as a mechanism to perform regridding between two axes that do not quite
match. A common example would be to regrid between two monthly axes one of which has points located at
the 15th of each month and the other having points exactly at mid-month. These Ferret commands illustrate the
example using a 5-month axis in 1993:

! define axes for 15th of month and mid-month

yes? DEFINE AXIS/UNIT=DAYS/T0=1-JAN-1900 month_15 =
DAYS1900(1993,I[I1:5], 15)

yes? DEFINE AXIS/UNIT=DAYS/T0=1-JAN-1900/EDGES month_mid =
 DAYS1900(1993,I[I=1:6], 1)
yes? let my_var = L[gt=month_15
yes? list my_var
 L[GT=MONTH_15]

 15-JAN-1993 00 / 1: 1.000
 15-FEB-1993 00 / 2: 2.000
 15-MAR-1993 00 / 3: 3.000
 15-APR-1993 00 / 4: 4.000
 15-MAY-1993 00 / 5: 5.000

yes? list my_var[gt=month_mid]
 L[GT=MONTH_15]

 regrid: on T
 16-JAN-1993 12 / 1: 1.048
 15-FEB-1993 00 / 2: 2.000
 16-MAR-1993 12 / 3: 3.048
 16-APR-1993 00 / 4: 4.033
 16-MAY-1993 12 / 5: ! unable to interpolate

yes? list my_var[gt=month_mid@max]
 L[GT=MONTH_15]
 regrid: on T@MAX

 16-JAN-1993 12 / 1: 1.000
 15-FEB-1993 00 / 2: 2.000
 16-MAR-1993 12 / 3: 3.000
 16-APR-1993 00 / 4: 4.000
 16-MAY-1993 12 / 5: 5.000

@XACT

Regridding with G=@XACT (or GX=@XACT, etc.) is a request to transfer values from a source grid to a
destination grid only at those positions where there is an exact coordinate match between the source and
destination axis points on the axis in question. Other destination points will be set to "missing". This
transformation is especially useful for taking multiple in-situ data profiles, such as oceanographic cast data,
and regridding them onto a regular (sparse) grid. For example: grep

yes? LET xcoarse = sin(x[x=0:20:10])
yes? LIST xcoarse
 SIN(X[X=0:20:10])
 0 / 1: 0.0000
 10 / 2: -0.5440
 20 / 3: 0.9129
 yes? DEFINE AXIS/X=0:20:5 xfine
 yes? LIST xcoarse[gx=xfine@XACT]
 SIN(X[X=0:20:10])
 regrid: 5 delta on X@XACT
 0 / 1: 0.0000
 5 / 2:
 10 / 3: -0.5440
 15 / 4:
 20 / 5: 0.9129

@MOD

Creates climatologies from time series by regridding to a time series axis with a modulo regridding
transformation. See the section on Modulo Regridding (p. 132) for details.

Examples

1) Let variable temp be defined on a grid with points spaced regularly at 1-degree intervals in both longitude
and latitude (X and Y). Let grid "g10" possess points spaced regularly at 10-degree intervals in both X and Y.

yes? PLOT temp[G=g10] ! uses linear interpolation (@LIN)
yes? PLOT temp[G=g10@AVE] ! area-averages 10x10 degrees of source\
 points into each destination point.
yes? PLOT temp[G=g10,GX=@AVE] ! averages 10 degrees of longitude but\
 interpolates (@LIN) in Y.

2) @ASN has the effect of bypassing Ferret's protections against misrepresenting data (Figure 4_4).

yes? SET DATA levitus_climatology
yes? SET REGION/X=180/Y=0 ! true profile
yes? PLOT/Z=0:5000 temp
yes? DEFINE AXIS/DEPTH /Z=100:2000:100 zfalse
yes? DEFINE GRID/LIKE=temp /Z=zfalse gfalse ! false profile
yes? PLOT/Z=0:5000/OVER temp[G=gfalse@ASN]

Ch4 Sec2.5. Modulo regridding

Ferret can create climatologies from time series simply by regridding to a climatological axis with a modulo
regridding transformation. For example, if the axis named month_reg is a 12-point monthly climatological
(modulo) axis then the expression

LET sst_climatology = sst[D=coads,GT=month_reg@MOD]

is a 12-month climatology computed by averaging the full time domain of the input variable (576 points for
coads) modulo fashion into the 12 points of the climatological axis.

Ferret has three pre-defined climatological axes: seasonal_reg (Feb, May, Aug, Nov), month_reg (middle of
every month), and month_irreg (15th of every month).

yes? USE climatological_axes
*** NOTE: regarding ... climatological_axes.cdf
*** NOTE: Climatological axes SEASONAL_REG, MONTH_REG, and MONTH_IRREG
 defined
yes? CANCEL DATA climatological_axes ! the axes are still defined

To generate a climatology based on a restricted range of input data simply define an intermediate variable with
the desired points. For example, a monthly climatological time series based on data from the 1960s could be
computed using

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch4_fig04.GIF

LET sst_1960s = sst[D=coads,T=1-jan-1960:31-dec-1969]
PLOT sst_1960s[GT=month_reg@MOD]

In a similar fashion intermediate variables can be defined that mask out certain input points.

This example shows the entire sequence necessary to generate a plot of climatological SST at 40N, 40W based
on the January 1982 to December 1992 Fleet Numerical wind data set. (Figure 4_5).

! use the predefined climatological axes
USE climatological_axes
CANCEL DATA climatological_axes

! use the Fleet Numerical winds
SET DATA monthly_navy_winds

! plot the raw data (top figure)
SET REGION/X=40w/Y=40n
plot uwnd

! plot the 12 month climatology (middle figure)
LET uwnd_clim = uwnd[GT=month_reg@MOD]
PLOT uwnd_clim

! since uwnd_clim is on a climatological axis
! Ferret can also plot it on the calendar axis with the raw data
PLOT/T=16-jan-1982:17-dec-1992 uwnd,uwnd_clim

In many cases the volume of input data needed to perform climatological calculations is very large. In the
example above the command

CONTOUR/X=0:360/Y=90s:90n sst_climatology[L=1]

to plot January from the climatology would require Nx*Ny*Nt=72*72*576=3 Megawords of data. Such
calculations may be too large to fit into memory. However, if the region is fully specified (as shown for the X
and Y limits in the example) Ferret's internal memory manager will break up the calculation as needed to
produce the result. (See Memory Use in the chapter "Computing Environment", p. 223, for further details.)

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch4_fig05.GIF

Unlike other transformations and regridding, modulo regridding is performed as an unweighted average: each
non-missing source point contributes 100% of its weight to the destination grid box within which it falls. If the
source and destination axes are not properly aligned this can lead to apparent shifts in the data. For example, if
a monthly time series has data points at the first of each month and a climatological axis is defined at
midmonths, then unweighted modulo averaging will lead to an apparent 1/2-month shift. To avoid situations of
this type simply regrid to the climatological axis using linear interpolation prior to the modulo regridding.

Here is an example that illustrates the situation and the use of linear interpolation to repair it. (Figure 4_6).

! define test_var, an illustrative variable with 1 year periodicity
! Note: test_var points are at the **beginnings** of months
DEFINE AXIS/T=1-jan-1970:1-jan-1974:`365.25/12`/UNITS=days t10years
DEFINE GRID/T=t10years gg
LET test_var = SIN(L[G=gg]*2*3.14/12)

! plot 4 years of the cycle
PLOT test_var

! define climatological axes at the midpoints of months
USE climatological_axes
CANC DATA climatological_axes

! notice that modulo regridding appears to shift the data
! (due to mis-aligned source and destination axes) (top figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var[GT=month_reg@MOD]

! to avoid the shift we can first regrid test_var to mid-month
! points using linear interpolation (the default regridding method)
! notice that the function test_var is largely unchanged by this
LET test_var_centered = test_var[GT=month_reg]
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var_centered

! finally perform a modulo regridding on well-aligned data
! notice that the shift is gone (bottom figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var_centered[GT=month_reg]

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch4_fig06.GIF

Ch4 Sec2.5.1. Modulo regridding statistics

In addition to the modulo averaging calculation performed by @MOD Ferret provides other statistics of the
regridding. All modulo regridding calculations are unweighted as discussed under @MOD.

@MODVAR

the variance of source points within each destination grid box (SUM(var-varbar)^2)/(n-1))

@MODSUM

the sum of the source points within each destination grid box

@MODNGD

the number of source points contributing to each destination grid box

@MODMIN

the minimum value of the source points contributing to each destination grid box

@MODMAX

the maximum value of the source points contributing to each destination grid box

Ch4 Sec3. REGIONS

The region in space and time where expressions are evaluated may be specified in 3 different ways:

1) with the command SET REGION

2) with qualifiers to the command name (slash-delimited)

3) with qualifiers to variable names (in square brackets, comma-delimited)

If SET REGION is used, Ferret remembers the region as the default context for future commands, whereas a
qualifier to a command name specifies the region for that command only, and a qualifier to a variable name
specifies the region for that variable and command only.

Regions may be manipulated using DEFINE REGION, SET REGION, @ notation, and CANCEL REGION.
The Commands Reference section of this manual covers all of these topics.

Region information is normally specified in the following form:

 QUAL=val or
 QUAL=lo_val:hi_val or
 QUAL=val@transform (as a variable qualifier only) or
 QUAL=lo_val:hi_val@transform (as a variable qualifier only)

When the region for an axis is specified as a single value (instead of a range) Ferret, by default, selects the grid
point of the grid box containing this value. The Ferret mode "interpolate" can control this behavior. See
command SET MODE INTERPOLATE in Commands Reference, p. 352.

Examples: Regions

Examples of valid region specifications.

1) Fully specify the region in an XY plane with the first vertical (Z) level and time 27739.

yes? SET REGION/X=140E:160W/Y=10S:20N/K=1/T=27739

2) Contour vertical heat advection within whatever region is the current default (previously set with SET
REGION).

yes? CONTOUR qadz

3) Define, modify and set a named region and then modify with delta notation.

yes? DEFINE/REGION/Y=5S:5N YT !define region YT to be 5S:5N
yes? DEFINE REGION/DY=-1:+1 YT !modify region YT to be 6S:6N
yes? SET REGION/@YT !set current region to YT
yes? SET REGION/DY=-1:+1 !modify current region to 7S:7N

4) List meridional currents calculated by averaging values between the surface and a depth of 50 m.

yes? LIST v[Z=0:50@AVE]

5) Equivalent to v[Z=10] - v[Z=0:100@AVE], the anomaly at z=10 between v and the 0 to 100 meter
depth average of v.

yes? LIST/Z=10 v - v[Z=0:100@AVE]

Ch4 Sec3.1. Latitude

Specify latitude or a latitude range with the qualifier Y or J. Specifications using J are integers between 1 and
the number of points on the Y axis. Specifications using Y are in the units of the Y axis.

The units may be examined with SHOW GRID/Y. If the Y axis units are degrees of latitude then the Y

positions may be specified as numbers followed by the letters "N" or "S".

Examples

yes? CONTOUR temp[Y=15S:10N]
yes? LIST/J=50 u

Ch4 Sec3.2. Longitude

Specify longitude or a longitude range with the qualifier X or I. Specifications using I are integers between 1
and the number of points on the X axis. Specifications using X are in the units of the X axis.

The units may be examined with SHOW GRID/X. If the units are degrees, then X values may be given as
numbers followed by "W" or "E" (e.g., 160E, 110.5W) or as values between 0 and 360 with Greenwich at 0
increasing eastward. Note: If the X axis is "modulo" then it is sometimes desirable to use X greater than 360.

Examples

yes? CONTOUR temp[Y=160E:140W]
yes? LIST/I=100 u
yes? SHADE/X=100:460 temp !360 degrees centered at 100W

See the chapter "Grids and Regins", section "Modulo Axes" (p. 140), for help with globe-encircling axes.

Ch4 Sec3.3. Depth

Specify depth or a depth range with the qualifier Z or K. Specifications using K are integers between 1 and the
number of points on the Z axis. Specifications using Z are in the units of the Z axis.

The units may be examined with SHOW GRID/Z.

Examples

yes? CONTOUR temp[Z=0:100]
yes? LIST/K=3 u

Ch4 Sec3.4. Time

Specify time or a time range with the qualifier T or L. Specifications using L are integers between 1 and the
number of points on the T axis. Specifications using T may refer to calendar dates or to the time step units in
which the time axis of the data set is defined.

Calendar date/time values are entered in the format dd-mmm-yyyy:hh:mm:ss, for example 14-FEB-
1988:12:30:00. At a minimum the string must contain day, month, and year. If the string contains any colons it
must be enclosed in quotation marks to differentiate from colons used to designate a range. If a time increment
is specified with the repeat command given in calendar format (e.g., REPEAT/T="1-JAN-1982":"15-JAN-
1982":6) it is interpreted as hours always. Calendar dates in the years 0000 and 0001 are regarded as year-
independent dates (suitable for climatological data).

SHOW GRID/T can be used to display time step values. (Units may vary between data sets.) The commands
SET MODE CALENDAR and CANCEL MODE CALENDAR can be used to view date strings or time steps,
respectively.

Examples

yes? LIST/T="1-JAN-1982:13:50":"15-FEB-1982" density
yes? CONTOUR temp[T=27740:30000]
yes? LIST/L=90 u

See the section in this chapter on "Modulo Axes" (p. 140) for help with climatological axes.

Ch4 Sec3.5. Delta

The notation q=lo:hi:delta (e.g., Y=20S:20N:5) specifies that the data in the requested range is regularly
subsampled at interval "delta."

This notation is valid only for the REPEAT, SHOW GRID, and DEFINE AXIS commands, and the qualifiers
/HLIMITS and /VLIMITS used in action commands with graphical output.

It can also be used in square brackets when specifying variable context:

yes? LIST temp[l=40:90:5]

(but this is NOT allowed: LIST/L=40:90:5 temp)

Ch4 Sec3.6. @ notation

Regions may be named and referred to using the syntax "@name". Some commonly used regions are
predefined. See commands SET REGION (p. 359) and DEFINE REGION (p. 300) in the Commands
Reference section for further information.

If a region is specified using a combination of "@" notation and explicit axis limits the explicit axis limits will
be evaluated after the "@" specification, possibly superseding the "@" limits.

Note: It is not advised to use the @notation inside of variable definitions, as redefinitions of the named region

can cause code errors that lead to wrong results.

Using the @ notation only sets/alters the axis limits specified in the named region. For example, suppose that
region "XY" is defined for the X and Y axes, but not for the Z and T axes. Then

yes? SET REGION/@XY

modifies only X and Y limits. BUT,

yes? SET REGION XY

modifies all axes—X and Y to the limits specified by XY, and Z and T to unspecified (even if they were
previously specified).

Examples

1) Contour the 25th time step of temperature data at depth 10 within region T, the "Tropical Pacific."

yes? CONTOUR/@T/Z=10/L=25 temp

2) Produce a contour plot over region W, the "Whole Pacific Ocean," in the XY plane (the variable to be
contoured as well as the depth and time will be inferred from the current context).

yes? CONTOUR/@W var1

3) Set the default region to "T", the Tropical Pacific Ocean (latitude 23.5S to 23.5N).

yes? SET REGION/@T

4) Define a region and then supersede with an axis limit specification.

yes? DEFINE REGION/X=180:140W/Y=2S:2N/Z=5 BOX1
yes? SET REGION/@BOX1/Z=15 !replace Z

Pre-defined regions

As a convenience in the analysis of the Tropical Pacific Ocean the following regions are pre-defined:

These may be redefined by the user for the duration of a Ferret session or until the definitions are canceled.

Ch4 Sec3.7. Modulo axes

Some axes are inherently "modulo," indicating that the axis wraps around—the first point immediately
following the last.

To determine if an axis is modulo use SHOW AXIS or SHOW GRID. A letter "m" following the number of

points in the axis indicates a modulo axis. The command SHOW GRID qualified by the appropriate axis limits
can be used to examine any part of the axis—including points beyond the nominal length of the axis. The
commands SET AXIS/MODULO and CANCEL AXIS/MODULO can be used to control this feature on an
axis-by-axis basis. Starting with Ferret version5.5, longitude axes and climatological time axes are always
detected as modulo, unless Ferret is specifically directed that the axis is NOT modulo, e.g. by a CANCEL
AXIS/MODULO command.

Example

yes? SET DATA coads_climatology
yes? SHOW GRID/I=180:183 sst !range request beyond last point
 GRID COADS1
 name axis # pts start end
 COADSX LONGITUDE 180mr 21E 19E(379)
 [text omitted]
 I X BOX_SIZ
 180> 19E(379) 2
 181> 21E(381) 2
 182> 23E(383) 2
 183> 25E(385) 2

The most common uses of modulo axes are:

1) As longitude axes for globe-encircling data sets. This allows any starting and any ending longitudes to be
used, for example, X=140E:140E indicates the entire earth with data beginning and ending at 140E.

2) As time axes for climatological data. By this device the time axis appears to extend from 0 to infinity and
the climatological data can be referred to at any point in time. This facilitates comparisons with data sets at
fixed times.

Ch4 Sec3.7.1. Subspan Modulo Axes

Ferret V5.5 introduces the concept of a "sub-span modulo axis" -- an axis where the range is a sub-range of a
fullmodulo cycle. As of V5.5, longitude axes and climatological time axes are always detected as modulo, or
as sub-span modulo when appropriate, unless Ferret is specifically directed that the axis is NOT modulo, e.g.
by a CANCEL AXIS/MODULO command. If the user does not specify the modulo length, it is set to 360
degrees for a longitude axis, or a year for a time axis. Time axes of lenght less than or equal to one year, and
starting in year 0000 or 0001 are taken to be climatological axes.

The modulo length of an axis defined on the Ferret command line is set with an argument to the MODULO
qualifier, or with an argument to the NetCDF modulo attribute. Here is an example showing an axis defined
explicitly as a modulo axis, and another which is modulo by default.

yes? DEFINE AXIS/MODULO=100/x=41:55:1 xax_subspan
yes? DEFINE AXIS/X=100:300:10/UNITS=degrees_longitude xax_lonspan

The output of SHOW AXIS includes the modulo length and span of the axis:

yes? show axis xax*

 name axis # pts start end
XAX_SUBSPAN 6mr 41 46
 Axis span (to cell edges) = 6 (modulo length = 100)
XAX_LONSPAN LONGITUDE 21mr 100E 60W
 Axis span (to cell edges) = 210 (modulo length = 360)

In NetCDF output files you will now see the modulo attribute taking a value. Continuing the example above,
we write some variables using the axes to a file and use ncdump to show the modulo attribute in these files.

yes? LET v1 = X[GX=xax_subspan] +10
yes? LET v2 = SIN(X[GX=xax_lonspan])
yes? SAVE/FILE=test_subspan_modulo.nc v1, v2
yes? SPAWN ncdump -c test_subspan_modulo.nc

netcdf test_subspan_modulo {
dimensions:
 XAX_SUBSPAN = 15 ;
 XAX_LONSPAN = 21 ;
variables:
 double XAX_SUBSPAN(XAX_SUBSPAN) ;
 XAX_SUBSPAN:modulo = 100. ;
 XAX_SUBSPAN:point_spacing = "even" ;
 XAX_SUBSPAN:AXIS = "X" ;
 float V1(XAX_SUBSPAN) ;
 V1:missing_value = -1.e+34f ;
 V1:_FillValue = -1.e+34f ;
 V1:long_name = "X[GX=XAX_SUBSPAN] + 10" ;
 double XAX_LONSPAN(XAX_LONSPAN) ;
 XAX_LONSPAN:units = "degrees_east" ;
 XAX_LONSPAN:modulo = 360. ;
 XAX_LONSPAN:point_spacing = "even" ;
 XAX_LONSPAN:AXIS = "X" ;
 float V2(XAX_LONSPAN) ;
 V2:missing_value = -1.e+34f ;
 V2:_FillValue = -1.e+34f ;
 V2:long_name = "SIN(X[GX=XAX_LONSPAN])" ;

// global attributes:
 :history = "FERRET V5.50 15-Jan-03" ;
data:

XAX_SUBSPAN = 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 ;

XAX_LONSPAN = 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210,
 220, 230, 240, 250, 260, 270, 280, 290, 300 ;
}

The importance of the sub-span modulo axes is to take the first of two steps that will make itpossible for users
largely to ignore differences in encodings of longitude and climatological time -- e.g. the blending of data in
plots and analyses where the data come from data sets that are encoded variously as -180:180, 0:360, etc.
 Thus, for example, in V5.5 you can refer to my_subspan_var[g=another_var] and get a meaningful answer as
long as the grids occupy the same region on the globe, regardless of longitude encoding. (The second step, for
a future release, will address the longitude encoding of scattered data.)

Example:

Suppose we have data on an axis that was defined as follows

yes? DEFINE AXIS/X=520:550:1/UNITS=degrees xax

and supposet we want to overlay it on a map showing the regional topography.

yes? USE etopo05
yes? SHOW GRID rose ! We will want the names of the axes
 GRID GOZ1
name axis # pts start end
ETOPO05_X LONGITUDE 4320mr 0E 0.079987W
ETOPO05_Y LATITUDE 2161 r 90S 90N
normal Z
normal T

yes? SET REGION W
yes? SHADE/PAL=land_sea rose[d=1] ! draw the shade plot

yes? USE my_data.nc ! The dataset containing the x=520:550 data
yes? SHOW AXIS xsub
name axis # pts start end
XSUB LONGITUDE 31mr 160E(520) 170W(550)
 Axis span (to cell edges) = 31 (modulo length = 360)

yes? SHADE/OVER/PAL=greyscale a[GX=etopo05_x,GY=etopo05_y]

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch4_fig07.GIF

There is an implied void point in a sub-span modulo axis that fills the gap between the end of the axis and the
start of the next modulo cycle. The data value at this point will always be the missing value flag (except for
pseudo-variables such as "X[g=my_subspan_axis]"). Transformations such as smoothers do not operate across
the void point.

In NetCDF files, the modulo attribute is specified as follows:

1) Specify the modulo length of the axis with the attribute modulo = <value>, e.g. var:modulo=100;

2) The modulo attribute from previous NetCDF files remains unchanged: modulo = " ". To set a modulo axis
of standard length (360 degrees or one year). The modulo length is 360 degrees for a longitude axis, or one
year for a climatological time axis.

3) The attribute value modulo = "FALSE", modulo = "NO", modulo="OFF" tells Ferret that the axis is not to
be treated as modulo

Ch4 Sec3.8. Region Conflicts

Conflicting region information can be given to Ferret in obvious ways such as

LIST/I=1:3 I[I=1:10]

in which it is not clear if the request is for 10 points or for 3, or in subtler, disguised ways such as

LET A = I[I=1:10] LIST/I=1:3 A

In both examples Ferret would resolve the conflict by listing just the three values I=1:3.

Internally, Ferret uses the region closest to the variable to perform the calculation. Thus, in both of the
examples above Ferret will perform the calculation on I=1:10, since the "[I=1:10]" directly modifies the
variable name. If Ferret sees conflicting regions it attempts to use the regions further from the variable to clip
the calculation. Thus 10 points are clipped to 3 in the above examples.

Unresolvable conflicts such as

LIST/I=11:13 I[I=1:10]

will result in a warning message that invalid limits have been ignored.

Ch4 Sec4. FERRET PROGRAM LIMITS

There are a number of hard limits in the Ferret code: the number of variables that may be defined, the number
of datasets open at a time, the length of certain strings, etc. Some of these limits have been relaxed with
successive Ferret versions as computing resources have expanded. Here are the limits as of Ferret version

5.41:

Parameter Name Value Description

memsize 6.4 Initial size of memory at startup, in Megawords. You can always
change the memory at startup with the -memsize option (p. 6), or
during a Ferret session with the SET MEMORY command. SHOW
MEMOR gives the current size of the memory cache.

cmnd_buff_len

2048 Length of the command buffer. You can make long commands more
readable using the continuation character backslash \ (p. 13)

Number of arguments
to go scripts

99 Maximum number of arguments to a go script. Use the syntax ($nn) or
$nn in the script. (p. 22)

Length of arguments to
go scripts

511 Maximum length in characters of each argument to a go script.

maxvars 2000 Maximum number of all variables defined by SET DATA (including
aliases USE and FILE)

max_uvars 2000 Maximum number of all user-defined variables (LET var =)

maxezvars 100 Maximum number of variables that can be read from a single
delimited ASCII file, using SET DATA/FORMAT=DELIMITED (p.
341)

maxezfreefmtvars 20 Maximum number of variables that can be read in free format from a
single ASCII file, e.g. in SET
 DATA/EZ/VARIABLES="var1,var2" (p.344)

maxdsets 100 Maximum number of data sets simultaneously open (as seen through
SHOW DATA)

maxstepfiles 500 Maximum number of files with time step data. These are read via
descriptor files (p. 33). This is a limit on the cumulative sum of all
files in all open multi-file data sets.

s_filename 128 Maximum length of the filenames listed within descriptor files (p.
249).

max_grids 500 Maximum number of static grids (grids defined by DEFINE GRID).

max_dyn_grids 1000 Total number of grids that can be defined at any time, static and
dynamic. Dynamic grids are created by opening data sets and by
implicit regridding operations such as strides (e.g. var[i=1:100:10]),
regridding operations between grids of different dimensionality (e.g.
temp4d[g=sst]), and external functions that create new grids (e.g.
EOF_SPACE(A, F)) .

max_lines 1000 Maximum number of static axes. Static axes are axes defined by
DEFINE AXIS

max_dyn_lines 1500 Total number of axes, static and dynamic, thatcan be defined.
Dynamic axes are defined by opening data sets and by implicit
regridding operations such as strides (e.g. var[i=1:100:10]), regridding
operations between grids or axes of different dimensionality (e.g.
temp4d[gx=sst]), and external functions that create new grids (e.g.
SAMPLEXY(sst, xpts, ypts))

maxlinestore 250000 Maximum number of coordinates in all irregular axes. This is the sum
of all the coordinates of irregular axes currently defined via opening
files and DEFINE AXIS. Coordinate storage may be recovered with
the CANCEL AXIS command.

abstract_line_dim 20480 Dimension of the default abstract axis for reading ASCII data (p. 42).
To read larger amounts of data, explicitly define an axis or grid.

ef_max_args 9 Maximum number of arguments that may be passed to an external
function.

ef_max_work_arrays 9 Maximum number of work arrays defined by an external function for
use by that function.

spec_size 250 Maximum number of levels in a spectrum, or palette file (.SPK) (p.
171)

pattern_num 50 Maximum number of patterns defined in a pattern file (.PAT) (p. 323)

Chapter 5: ANIMATIONS AND GIF
IMAGES

Ch5 Sec1. OVERVIEW

There are two modes for animating in Ferret. One can animate "on the fly" in an
interactive sesion, or a sequence of Ferret plots can be stored and then animated.
For stored secquences of plots, each plot is stored as one frame in a movie file.
Ferret stores movie frames in Hierarchical Data Format (HDF), a format designed
by the National Center for Supercomputing Applications (NCSA). A movie file
can then be displayed as an animated sequence of frames with NCSA's xds—X
Data Slice (not distributed with Ferret; see the section in this chapter "Displaying
an HDF movie" (p. 149), for details).

Ch5 Sec1.1. Animating on the fly

In a Ferret session, display an animation with the command,

yes? REPEAT/ANIMATE[/LOOP=n]

 to start an animation sequence. Given LOOP=n, the entire animation sequence
will repeat n times.

 Example:

yes? set data coads_climatology
yes? repeat/l=1:12/animate/loop=5 (shade sst; go fland)

NOTE: In order to properly display on SGI's, it is necessary to have backing store
enabled for the Xserver.

Ch5 Sec1.2. Note on using whirlgif to make a movie

The following sections detail making movies with HDF, but another method has
been brought to our attention. An easy way to make movies from gif files
generated by Ferret is a public domain utility called whirlgif. The documentation
indicates that it is available for a variety of systems.

Whirlgif is extremely easy to use:

1. Make your gif files with a Ferret command like:

yes? REPEAT/J=1:36 (GO scriptfile `j`; FRAME/FILE=whirl-`j`.gif)

where the scriptfile uses the argument j to determine the plot characteristics. See
sections later in this chapter for more on the REPEAT command (p. 149) and
creating GIF files (p. 152).

2. Make a file (for example call it whirlgif-infile) that consists of a list of the gif
files (including repeats if you want):

> more whirlgif-infile

 whirl-1.gif
 whirl-2.gif
…

This file can be as long as you want and may specify files more than once to repeat
any of the images if you wish.

3. From the unix command line use whirlgif to make the movie:

> whirlgif -o movie_filename.gif -i whirlgif-infile

That's it. Whirlgif simply concatenates the gif files with some connecting
information needed to do the animation. The resulting movie gif file is just about
as large as the sum of the input frames.

These show nicely on the web, or you can use xanim (under unix) to view locally.

Download whirlgif from http://www.msg.net/utility/whirlgif/
or the mirror site: http://www.danbbs.dk/~dino/whirlgif/index.html

which has extensive documentation. But we have found that it is a simple program
that works without much study.

Ch5 Sec2. CREATING AN HDF MOVIE

Creating a movie requires two steps:

1) designate an output file with SET MOVIE

2) generate a sequence of frames with REPEAT and FRAME

See commands SET MOVIE (p. 358), CANCEL MOVIE (p. 285), SHOW MOVIE
(p. 374), FRAME (p. 310), and REPEAT (p. 334) in the Commands Reference
section of this manual.

Example: basic movie

yes? SET DATA coads_climatology !specify data set
yes? SET REGION/@W !specify Pacific Ocean
yes? LET/TITLE="SST Anomaly" SST_ANOM = SST - SST[L=1:12@AVE]
yes? REPEAT/L=1:12 (FILL sst_anom; FRAME/FILE=my_movie.mgm)
 !filled contour of sea
surface\
 temp anomaly captured and\
 written to HDF file

Optionally, ".mgm" will be assigned to the movie file.

REPEAT executes its argument (in the above example, FILL) successively for
each timestep specified. REPEAT can have multiple arguments separated by semi-

http://www.msg.net/utility/whirlgif/
http://www.danbbs.dk/~dino/whirlgif/index.html

colons and enclosed in parentheses.

FRAME is a stand-alone command, but also a qualifier for the graphical output
commands PLOT, CONTOUR, FILL (alias for CONTOUR/FILL), SHADE,
VECTOR and WIRE.

The saved animation frames are exactly the size and shape of the window from
which they are created. Thus a large window results in a larger, slower animation
that demands more disk space and memory to play back. The SET
WINDOW/SIZE= command is generally used to specify minimally acceptable
frame size.

See section "Advanced Movie-making" (p. 149), for more examples.

Ch5 Sec3. DISPLAYING AN HDF MOVIE

Viewing a movie requires software which is not included with the Ferret
distribution (although in some cases we have made the binary available in Ferret's
anonymous ftp area). NCSA's X Data Slice reads HDF files and is available via
anonymous ftp from NCSA. It requires about 1.7Mb of disk space. NCSA's ftp
server is

 ftp.ncsa.uiuc.edu login id is "anonymous", give your e-mail address as the
password

Consult the README files you will find there for instructions on obtaining X Data
Slice. Other utilities from NCSA can also be used for animations.

Ch5 Sec4. ADVANCED MOVIE-MAKING

Ch5 Sec4.1. REPEAT command

The REPEAT command is quite flexible. It allows you to repeat a sequence of
commands, not just a single command as in the basic example above. You can give
the GO command as an argument to REPEAT. The following examples
demonstrate these techniques.

Note: MODE VERIFY must be SET (this is the default state) for loop counting to
work.

Example 1

Note the method at the start of this chapter for making movies from a sequence of
GIF files and the whirlgif utility. (p.148)

Example 2

Here we give multiple arguments to REPEAT; note the semi-colon separation and
the parentheses. Note that FRAME, in this example, is used as a stand-alone
command.

yes? REPEAT/L=1:12 (FILL SST; GO fland; FRAME/file=my_movie.mgm)

Example 3

In this example we use the REPEAT command to pan and zoom over a sea surface
temperature field.

SET DATA coads_climatology
SET REGION/L=1
SET REGION/X=120E:60W/Y=45S:45N
SHADE sst; GO fland

! ZOOM
REPEAT/K=1:5 (SET REGION/DX=+8:-8/DY=+8:-8; SHADE sst; GO fland;
FRAME)

! PAN

REPEAT/K=1:5 (SET REGION/DX=+5; SHADE/LEV=(20,30,.5) sst; FRAME)

Example 4

In this example the user calls setup_movie.jnl (text included below), title.jnl, which
creates a title frame, then repeats main_movie.jnl (text included below) for each
time step desired. Finally, the user adds a frame of credits at the end of the movie.
Each of the scripts would end with the FRAME command (except setup_movie).
Using GO scripts as arguments to REPEAT allows you to customize the plot with
many commands before finally issuing FRAME, as the text of main_movie.jnl
below demonstrates.

yes? ! make the movie
yes? GO setup_movie
yes? GO title
yes? REPEAT/L=1:12 GO main_movie
yes? GO credits

! Setup_movie.jnl
SET WINDOW/SIZE=.45/ASPECT=0.7
SET MOVIE/file=my_movie.mgm
SET DATA coads_climatology
SET REGION/X=130E:75W/Y=8S:8N
SET MODE CALENDAR:months
GO bold
PPL SHAKEY ,,.15,.2
PPL AXLEN 8.8,4.8

! Main_movie.jnl
FILL/SET_UP/LEVELS=(16,31,1) sst
PPL LABS; PPL TITLE
PPL FILL
LABEL 210,9.5,0,0,.22 @TRCOADS MONTHLY CLIMATOLOGY (1946-1989)
LABEL 210,-12,0,0,.22 @TRSEA SURFACE TEMPERATURE (DEG C)
LABEL 130,11,-1,0,.22 @TR'LAB4'
FRAME

Note: If you use the FILL command, we suggest that you use SHADE while
customizing and fine-tuning your movie, then use FILL for the final run. SHADE
is much faster.

Ch5 Sec4.1.1. Initializing the color table

If you create a movie with a title frame, or a first frame which otherwise uses
different colors than the rest of the movie, you should be aware of an HDF
peculiarity: all the colors that you plan to use in your movie must be in the first
frame, or else color behavior will be unpredictable when you animate.

To "reserve" the colors you need, use overlapping full-window viewports. Make a
representative plot in the title frame, then cover over it with either a black or white
rectangle and finally write the title text. Here is a script which initializes the color
table while creating a title frame.

! define 3 identical full-frame viewports
DEFINE VIEW full1; DEFINE VIEW full2; DEFINE VIEW full3

! draw frame one of the movie in full color
SET VIEW full1
SET DATA coads_climatology
SHADE/LEVELS=(16,31,1)/L=1 sst ! dummy frame

! white-out over the picture
SET VIEW full2
GO setup_text
SHADE/PALETTE=white/NOLAB/NOKEY/i=1:2/j=1:2 (i+j)*0

!put on title frame labels (using [0,1] coordinate space)
SET VIEW full3
GO setup_text
PPL PLOT
LABEL .5,.7,0,0,.3 @TRMy Title
PPL ALINE 1,.2,.55,.8,.55
PPL ALINE 1,.2,.53,.8,.53
LABEL .5,.4,0,0,.2 @CRBy me

!capture the title frame and clean up
FRAME
GO cleanup_text

Ch5 Sec4.1.2. Making movies in batch mode

Ferret, like other Unix applications, can be run in "batch" mode by redirecting
standard input and output. Thus

ferret -unmapped <movie_commands.jnl >&movie.log&

will make a movie running in background mode based on the commands in file
movie_commands.jnl logging standard output and standard error in file movie.log.

Note, however, that when used in this mode to make a movie Ferret will still
require access to an X windows display (as in "setenv DISPLAY node:0"). To
eliminate this requirement we recommend the use of the X11R6 "virtual frame
buffer" (Xvfb). This application permits the movie frames to be generated in the
absence of any physical display device. Consult your system manager for the
availability of X11R6 for your system.

Ch5 Sec5. CREATING GIF IMAGES

GIF is a highly compressed format suitable for single images. (Ferret will not
directly create GIF89 animations.) The procedure for creating a GIF image is
nearly identical to the creation of a single frame of an HDF file. The modification
is generally just to select a file name with the ".gif" extension; Ferret will
automatically sense this as a request to create a GIF-formatted image file.
Alternatively, any file name can be used if the GIF format is specified explicitly
using

FRAME/FORMAT=GIF

If a number of GIF images are created using the same file name Ferret will
automatically rename subsequent versions with a version number. Thus a repeat
loop can be used to generate many GIF images.

Example:

REPEAT/L=1:12(FILL sst; GO fland; FRAME/file=myimage.gif)

Note: In this mode of grabbing an image, Ferret creates a GIF file by requesting
the image back from your screen (your X server). That means that the X server
normally has to be configured as pseudo-color.

An alternative approach to creating GIF's (which does not share this restriction) is
to invoke Ferret with the -gif command line switch "ferret -gif" (p. 6).

Ch5 Sec6. CREATING MPEG ANIMATIONS

MPEG animations can be created from the outputs of the FRAME
command—either HDF animation files or a sequence of GIF images. Various
public domain utilities are available to perform the conversion from Ferret's output
formats into MPEG animations. The routine hdf2mpeg (available in 2002 from
ftp://ftp.ncsa.uiuc.edu/HDF/HDF/contrib/NCSA/HDF2MPEG/) can be used to
convert HDF files into MPEG animations; mpeg_encode (available from mm-
ftp.CS.Berkeley.EDU in /pub/multimedia/mpeg/encode) can be used to convert
sequences of GIF files. New and improved routines may have become available
since the time of this writing. See further documentation on this topic in the FAQ
file from the Ferret home page.

ftp://ftp.ncsa.uiuc.edu/HDF/HDF/contrib/NCSA/HDF2MPEG/
http://www.ferret.noaa.gov/Ferret/FAQ/graphics/animations/making_mpegs.html
http://www.ferret.noaa.gov/Ferret/FAQ/graphics/animations/making_mpegs.html

Chapter 6: CUSTOMIZING PLOTS

Ch6 Sec1. OVERVIEW

Detailed control is possible over most aspects of Ferret graphical outputs. A custom modification
will require the user to either add a qualifier to a Ferret command or communicate directly with
the graphical package PPLUS, which is contained inside of Ferret. The most commonly used
PPLUS commands are listed in the following sections of this chapter. Consult the PLOT PLUS for
Ferret manual for complete command lists and the specifics of command syntax.

Ferret communicates with PPLUS by sending a sequence of commands to PPLUS (the command
PPL ECHO ON causes the sequence of commands that Ferret sends to PPLUS to be logged in the
file fort.41.). The user can give further commands to PPLUS directly using the Ferret command
PPL (e.g., yes? PPL AXLEN 10,7). Some results can be attained in two ways—with either
Ferret or PPLUS commands. However, the interaction of the two is complex and the inexperienced
user may get unexpected results, so when possible, use only Ferret commands. note1

PPLUS uses a deferred mode of output—various commands are given to PPLUS which describe
the plot state but produce no immediate output; the entire plot is then rendered by a single
command. Some plot states (e.g., axis labels) are set by Ferret with every plotted output; to
customize these states it is necessary to use the /SET_UP qualifier (which sets up the plot inside of
PPLUS) and then modify the state with direct PPL commands. Other plot states are never set by
Ferret and, if modified at any time, remain in their specified state for all subsequent plots. Still
other states are modified by Ferret only under special circumstances. Here is a very simple
customization (Figure 6_1):

yes? PLOT/X=1:100/TITLE="My SIN Plot"/SET_UP sin(x/6) !use /SET_UP
yes? PPL YLAB "SIN value"

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/_FN_1.htm
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig01.GIF

yes? PPL PLOT

The examples throughout this chapter show how the /SET_UP qualifier on graphics commands can
be used to delay rendering of a plot while the user modifies plot appearance with PPLUS
commands.

Below is a list of PPLUS commands which are reset by Ferret. Please see the the PPLUS Users
Guide for details of PPLUS syntax. (p. 405)

PPLUS command when reset by Ferret

XFOR, YFOR reset for every plot

XLAB, YLAB reset for every plot

XAXIS, YAXIS reset for every plot

LABS reset for every plot

ALINE reset for every plot

TAXIS OFF reset for every plot

TITLE reset for every plot

TICS reset for every plot (small tic size, only)

WINDOW ON reset for every plot

PEN 1,n reset for every plot

LIMITS reset for every plot

ORIGIN reset by SET WINDOW/ASPECT and SET VIEWPORT; Y origin
may be shifted to accommodate many line style keys

AXLEN modified by SET WINDOW/ASPECT and SET VIEWPORT

VIEWPORT modified by WIRE/VIEW

LEV modified by CONTOUR and SHADE unless /LEVELS_SAME given

VECSET modified by VECTOR unless /LENGTH_SAME given

WINDOW modified for "fresh" plots but not for overlay plots

Ch6 Sec2. GRAPHICAL OUTPUT

Ch6 Sec2.1. Ferret graphical output controls

Ferret command Function

CONTOUR produces a contour plot of a single field

FILL alias for CONTOUR/FILL; produces color-filled contour plot

PLOT produces a line or symbol plot of one or more arrays

SHADE produces a shaded representation (rectangular cells)

VECTOR produces a vector arrow plot

WIRE produces a 3D wire frame plot

SET WINDOW manipulates graphics windows

SET VIEWPORT places graphics output into a sub-window (pane)

Ch6 Sec2.2. PPLUS graphical output commands

The plot commands, in the table below, can be customized using /SET_UP to delay display. The
PLOT/SET_UP is followed by PPLUS commands which customize the settings for axes, labels,
plot layout, and so on. Then the plot will ultimately be rendered using a PPLUS graphical output
command (not the Ferret counterpart). A customized contour or filled-contour plot is rendered with
PPL CONTOUR, a wire frame plot with PPL VIEW and so on. Please see the overview of this
chapter (p. 155) and also the discussion in the Commands Reference section about PPLUS (p. 333).

In the following sections, there is a "PPLUS commands" subsection detailing which PPLUS
commands are used for each type of customization. See the examples in those sections, and cross-
references to the PPLUS command syntax in the PPLUS manual (Appendix B).

Command Function

CONTOUR makes a contour plot

PLOT plots x-y pairs for all lines of data

PLOTUV makes a stick plot of vector data

SHADE makes a shaded representation

VIEW makes a wire frame plot

VECTOR makes a plot of a vector field

The graphical output command PLOTUV can be used to make stick plots easily, as the following
time series example shows.

yes? SET DATA coads; SET REGION/X=180/Y=0/L=400:500
yes? PLOT/SET uwnd, vwnd
yes? PPL PLOTUV

Ch6 Sec3. AXES

By default, Ferret displays X- and Y-axes with tics and numeric labels at reasonable intervals and a
label for each axis. Time axes are also automatically formatted and used as needed. These axis
features can be modified or suppressed using the following Ferret direct controls and PPLUS
commands.

Ch6 Sec3.1. Ferret axis controls

The following qualifiers are used with graphical output commands PLOT, VECTOR, SHADE, and
CONTOUR to specify axis limits, tic spacing, and possible axis reversal:

 Ferret qualifers

 /HLIMITS, /VLIMITS, /NOAXIS

The /HLIMITS and /VLIMITS qualifiers use the syntax /HLIMITS=lo:hi:delta. Tic marks are
placed every "delta" units, starting at "lo" and ending at "hi". Every other tic mark is labeled.
"delta" may be negative, in which case the axis is reversed.

The /NOAXIS qualifier removes both X and Y axes from the plot. This is particularly useful for
plots using curvilinear coordinates (map projections) where the final axis values represent
transformed axis values rather than world coordinates.

The following arguments to SET MODE and CANCEL MODE determine axis style (e.g., SET
MODE CALENDAR:days) :

 Ferret arguments

 CALENDAR

 LATIT_LABEL

 LONG_LABEL

See the Commands Reference section of this manual (p. 281) for more information.

Ch6 Sec3.2. PPLUS axis commands

PPLUS commands can be used to customize axis settings. Note that Ferret makes settings for all
of these automatically; you will only need to make PPLUS calls to change the axis properties. See
the examples below, and the section on PPLUS graphical commands (p. 157) for more on the
syntax to make PPLUS calls.

Command Function

XAXIS* controls numeric labeling and tics on the X axis (redundant with /HLIMITS) (p.
472)

YAXIS* controls numeric labeling and tics on the Y axis (redundant with /VLIMITS) (p.
472)

AXATIC sets number of large tics automatically for X and Y (p. 445)

AXLABP locates or omits axis labels at top/bottom or left/right of plot (p. 445)

AXLEN** sets axis lengths (p. 445)

AXLINT sets numeric label interval for axes every nth large tic (p. 445)

AXLSZE sets axis label heights (p. 445)

AXNMTC sets number of small tics between large tics on axes (p. 445)

AXNSIG sets number of significant digits in numeric axis labels (p. 445)

AXSET allows omission of plotting of any axis (redundant with /AXES=) (p. 446)

AXTYPE sets axis type (linear, log, inv. log) for x- and y-axis (p. 446) (See also
/HLOG,/VLOG qualifiers on plot commands)

TICS sets axis tic size and placement inside or outside axes (p. 466)

XFOR* sets format of x-axis numeric labels (p. 472)

YFOR* sets format of y-axis numeric labels (p. 473)

XLAB* sets label of x-axis (p. 472)

YLAB* sets label of y-axis (p. 473)

TXLABP establishes time axis label position (or absence) (p. 467)

TXTYPE* sets the style of the time axis (p. 468)

TXLINT* specifies which time axis tics will be labeled (p. 467)

TXLSZE sets height of time axis labels (p. 468)

TXNMTC sets number of small tics between large tics on time axis (p. 468)

* issued by Ferret with every relevant plot

** issued by Ferret upon SET WINDOW/ASPECT or SET VIEWPORT

Examples

1) Plot with no axis labels (character or numeric) and no tics (Figure 6_2). (Equivalent to

 yes? GO box_plot PLOT/I=1:10/NOLABEL 1/i)

yes? PLOT/i=1:30/NOLABEL/SET 1/i
yes? PPL AXLABP 0,0 !turn off numeric labels
yes? PPL TICS 0,0,0,0 !suppress small and large tics
yes? PPL PLOT !render plot
yes? PPL TICS .125,.25,.125,.25 !reset tics to default
yes? PPL AXLABP -1,-1 !reset numeric labels

2) customize x-axis label (Figure6_3); XLAB always reset by Ferret)

yes? PLOT/SET/i=1:100 sin(x/6)
yes? PPL XLAB My Custom Axis Label
yes? PPL PLOT

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig02.GIF
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig03.GIF

3) specify tic frequency for y axis

yes? PLOT/i=1:30/YLIM=0:1:.2 1/i

4) Specify the size and location of tic marks on the axes. The PPLUS tics command is

ppl tics,smx,lgx,smy,lgy,IX,IY

IX and IY are 1,0,-1 for tics inside, straddling, and outside the axis with -1 as default. These
commands put large tics inside the axes.

yes? SHADE/SET/i=1:100/j=1:15 sin(x/6)*10./j
yes? PPL TICS .0,.35,.0,.35,1,1

yes? PPL SHADE

Ch6 Sec3.3. Overlaying symbols on a time axis

To overlay symbols or mark-up on a plot which has a formatted time axis (dates and times) it is
necessary to specify positions using the internal time encoding of that axis. Typically, the easiest
way to achieve this is to define a variable, say TT, which is the time encoding. This example
illustrates.

Example:

 demonstrate PLOT/VS and POLYGON over time axes (Figure 6_4)

USE coads_climatology

LET xsqr = {-1,1,1,-1} ! coordinates of a unit square
LET ysqr = {-1,-1,1,1}

LET xcircle = COS(6.3*i[i=1:42]/40) ! coordinates of unit circle
LET ycircle = SIN(6.3*i[i=1:42]/40) ! Notice the units of the time axis
SHOW GRID/L=1:3 sst

PLOT/X=180/Y=0 sst ! draw a time series plot

LET tt = T[GT=sst] ! tt is the coordinates along the T axis

! place an "X" at the value exactly at 7-aug
! "@ITP" causes interpolation to exact location

LET t0 = tt[T="7-aug-0000"@itp]
LET val0 = sst[X=180,Y=0,T="7-aug-0000"@itp]
PLOT/VS/OVER/NOLAB/SYM=2/LINE=8 t0,val0

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig04.GIF

! put a box around the "X"
POLYGON/OVER/LINE=8/TITLE="Special region" t0+500*xsqr, 0.05*ysqr+val0

! place an "X" on the data point nearest to 15-may
! Note that @ITP is absent, so behavior is set by MODE INTERPOLATE

LET t1 = tt[t="15-may-0000"]
LET val1 = sst[x=180,y=0,t="15-may-0000"]
PLOT/VS/OVER/NOLAB/SYM=2/LINE=10 t1,val1

! put a circle around the "X"
PLOT/VS/OVER/LINE=10/nolab t1+500*xcircle,0.05*ycircle+val1

Example (continued):

 mark-up over a Hofmuller diagram (Figure 6_5)

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig05.GIF

SHADE/X=180 sst ! latitude vs time plot
LET tlo = tt[T="1-jul-0000"@itp]
LET thi = tt[T="1-aug-0000"@itp]
POLYGON/OVER/LINE=7/PAL=gray/PAT=lite_up_left_to_right {`tlo`, `thi`,` thi`,
`tlo`}, {20, 20, 40, 40}

Ch6 Sec4. LABELS

Ferret, by default, produces labeled axes, a plot title, documentation about the plot axes normal to
the plot, and a signature (current date and Ferret version number) when a plot is rendered. The
/NOLABELS qualifier suppresses the plot title, the documentation and signature, and the axis
labels of independent axes. Note that you can use the LABEL command to add any labels that you
need..

Ch6 Sec4.1. Adding labels

The Ferret command LABEL adds a label to a plot and takes the following arguments:

yes? LABEL xpos,ypos,center,angle,size text

where xpos and ypos are in user (axis) units, size is in inches, angle is in degrees (0 at 3 o'clock)
and center is -1, 0, or +1 for left, center, or right justification. There is an example in the section
below on PPLUS label commands (p. 166). The label position will adjust itself automatically when
the plot aspect ratio or the viewport is changed.

If you prefer to locate labels using inches rather than using data units issue the command

 yes? LABEL/NOUSER xpos,ypos,...

Note, however, that the layout of a plot in inches—lengths of axes, label positions, etc.—shifts
with changes in window aspect ratio (SET WINDOW/ASPECT) and with the use of viewports.
Labels specified using LABEL/NOUSER will need to be adjusted if the aspect ratio or viewport is
changed.

 Notes:

1) If you use the command PPL LABS instead of LABEL, be aware that when defining a new
movable label, all lower-numbered labels must already be defined.

2) The Ferret command LABEL is an alias for PPL %LABEL. PPLUS does NOT consider a
label created with %LABEL to be a movable label. Consequently, no label number is assigned and
the label cannot be manipulated as a movable label.

3) %LABEL is an unusual command in that the label appears on the plot immediately after the
command is given, rather than being deferred. This has ramifications for the user who has multiple
plot windows open and is in MODE METAFILE, since a metafile is not closed until a new plot is
begun. If the user produces a plot in window B, and then returns to a previous window A and adds
a label with LABEL, that label will appear on the screen correctly, but will be in the metafile
corresponding to window B.

Example

yes? PLOT/I=1:100 sin(i/6)
yes? LABEL 50, 1.2, 0, 0, .2 @P2MY SIN PLOT

Ch6 Sec4.2. Listing labels

The PPLUS command PPL LIST LABELS can be used to list the currently defined labels. For
example,

 yes? PPL LIST LABELS
@ACSEA SURFACE TEMPERATURE (Deg C)
@ASLONGITUDE
@ASLATITUDE

 XPOS YPOS HGT ROT UNITS
LAB 1 8.000E+00 7.200E+00 0.060 0 SYSTEM @ASFERRET Ver. 4.40
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 2 8.000E+00 7.100E+00 0.060 0 SYSTEM @ASNOAA/PMEL TMAP
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 3 8.000E+00 7.000E+00 0.060 0 SYSTEM @ASOct 22 1996 09:24
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 4 0.000E+00 6.600E+00 0.120 0 SYSTEM @ASTIME : 16-JAN
LINE PT: 0.000E+00 0.000E+00 NO LINE LEFT JUSTIFY LABEL
.
.
.

The first three lines of output show the plot title, the X axis label, and the Y axis label. These labels
are controlled by the PPL TITLE, PPL XLAB, and PPL YLAB commands, respectively. The three
characters "@AS" indicate the font of the label—in this case "ASCII Simplex" (see the section in
this chapter, "Fonts," p. 175).

Next is a table of "movable labels"—labels that were defined using the PPL LABS command.
Labels are generally simpler to control with the GO unlabel and LABEL commands described in
the following sections, rather than with the PPL LABS command.

Each label is described with two lines. The column headers refer to the first of the two. The
coordinates of each label, (XPOS,YPOS), may be in units of "inches" or may be in the units of the
axes. This is reflected in the UNITS field of the output, which will contain "SYSTEM" if the
coordinates are in inches or "USER" if the coordinates are axis units. (The /NOUSER qualifier on
the PPL LABS command is used to indicate that coordinates are being given in inches.)
Coordinates are calculated relative to the axis origins. The PPL HLABS and PPL RLABS
commands control label height and rotations, respectively.

The second line of the label description contains information about an optional line on the plot
which can be used to point to the label (refer to the PPLUS command LLABS or see the section in
this chapter, "Positioning labels using the mouse pointer," p. 167). At the end of this line is the text
of the movable label.

Ch6 Sec4.3. Removing movable labels

Removing a movable label is a two step process: identifying the label number and then deleting the
label. PPLUS internally refers to all movable labels with label reference numbers. The PPLUS
command LIST LABELS will list the PPLUS labels and the text strings they contain. Then the user
can use "GO unlabel n", where n is the reference number, to delete a label.

Example
In this example we plot the same figure in two viewports, one plot with the default "signature," and
one plot with the signature removed (Figure 6_6).

!upper viewport has a "signature"
yes? PPL BOX on
yes? SET VIEW upper
yes? PLOT/I=1:100 sin(i/6)

!in the lower viewport
!the signature has been removed
yes? SET VIEW lower
yes? GO unlabel 1
yes? GO unlabel 2
yes? GO unlabel 3
yes? PPL PLOT
yes? CANCEL VIEWPORT

Ch6 Sec4.4. Axis labels and title

Special commands and special logic govern the labels of axes and titles. Use the PLOT+
commands XLAB, YLAB, and TITLE in conjunction with the Ferret plotting qualifier /SET_UP to
modify the labeling choices that Ferret makes. These are discussed in the section below, PPLUS
label commands (see p. 166).

For two-dimensional plots (CONTOUR, FILL) Ferret will label the plot axes with the titles and
units from the appropriate axes of the grid. The command SHOW GRID can be used to see the
labels that will be used. The title will be the title of the variable (see SHOW VARIABLE, p. 375,
and SHOW DATA/VARIABLE, p. 369) modified by the units and comments about
transformations in parentheses.

For one-dimensional plots (PLOT) other than PLOT/VS the independent axis will be labeled using
the title and units from the appropriate axis of the grid. The dependent axis will be labeled with the
units of the variable being plotted. The title will be labeled as for two-dimensional plots.

For output of the PLOT/VS command the axes will be labeled with the titles of the variables (see
SHOW VARIABLE, p. 375, and SHOW DATA/VARIABLE, p. 369) each modified by its units
and comments about transformations in parentheses.

Ch6 Sec4.5. Ferret label controls

In addition to LABEL (discussed above, page 162), Ferret controls include the /NOLABELS
qualifier, which suppresses default plot title, documentation and signature, axis labels, and /TITLE
qualifier to graphical output commands PLOT, SHADE, CONTOUR, VECTOR, and WIRE:

 Ferret qualifiers

 /NOLABELS

 /TITLE=

and arguments to SET MODE and CANCEL MODE:

 Ferret arguments

 ASCII_FONT

 CALENDAR

 LATIT_LABEL

 LONG_LABEL

Ch6 Sec4.6. PPLUS label commands

Ferret stores the text strings of the following labels in PPLUS symbols. The symbol names are:

symbol name label

LABTIT title label

LABX X axis label

LABY Y axis label

LABn nth movable label

PPLUS commands can be used to customize labels. See the example below, and the section on
PPLUS graphical commands (p. 157) for more on the syntax to make PPLUS calls. As stated
above, PPLUS commands regarding movable labels are largely superceded by the Ferret command
LABEL and "GO unlabel n". However the /SETUP qualifier on a plot command in conjuction
with PPLUS commands LABSET, TITLE, XLAB, and YLAB are used to modify the labels that
Ferret automatically puts on plots. See the section on PPLUS graphical commands for more on
calling PPLUS plot commands (p. 157)

Command Function

LIST LABELS shows the currently defined labels (p. 457)

LABSET sets character heights for labels (p. 454)

TITLE* sets and clears main plot label (p. 466)

XLAB* sets label of X axis (p. 472)

YLAB* sets label of Y axis (p. 473)

LABS* makes, removes, or alters a movable label (p. 453) (redundant with LABEL
command)

HLABS sets height of each movable labe (p. 452)l

RLABS sets angle for each movable label (p. 463)

LLABS sets start position for and draws a line to a movable label (p. 458)

* issued by Ferret with every relevant plot

Example

This example customizes a plot using PPLUS label controls. The LABSET command (See p.
 454) is used here to control the size of the main label, x-label, and y-label. The Ferret LABEL
command is used to add a label.

yes? PLOT/I=1:100/SET_UP i * sin(i/6)
yes? PPL LABSET 0.3, 0.08, 0.3

yes? PPL TITLE

yes? PPL YLAB "Modiified SIN function"

yes? PPL PLOT

yes? LABEL 10.,20,-1,30,0.2 "Angled label"

Ch6 Sec4.7. Positioning labels using the mouse pointer

Often it is awkward precisely to position plot labels. Using the mouse pointer can simplify this as
mouse clicks can be used to place labels and other annotations on plots. The full syntax of the
LABEL command is

LABEL xpos, ypos, justify, rotate, height "text"

 xpos,ypos are the (x,y) position of the label

 justify = -1, 0, 1 for left, center, right justification — default = left

 rotate is given in degrees counter-clockwise — default = 0

 height is in "inches"

 text to be plotted. This argument may include font and color specifications

Note that the LABEL /NOUSER qualifier is not relevant for mouse input.

If either of the first two arguments (label position) are omitted it is a signal that mouse input is
desired. For example

 yes? GO ptest
yes? LABEL "this is a test"

will wait for mouse input, using the indicated point as the lower left corner of the text string.
Equivalent to this is

yes? LABEL ,,-1,0,.12 "this is a test"

Note that left justification will always be used in this mode, regardless of the value specified.

For mouse control over justification and/or to draw a line or arrow associating a label with a feature
on the plot, explicitly omit the justification argument. Ferret will put up a menu requesting a
selection of "Arrow", "Line", "Right", "Center", "Left". If Arrow or Line is selected two mouse
inputs are required — the first indicating the feature to be marked, the second indicating the lower
left corner of the text area. If "Right", "Center" or "Left" is specified the text will be justified
accordingly.

Note that the mouse-driven LABEL command defines the symbols XMOUSE and YMOUSE and

writes comments regarding their definitions into the current journal file (if any) as described under
the WHERE alias.

The command (alias) WHERE requests mouse input from the user, using the indicated click
position to define the symbols XMOUSE and YMOUSE in units of the plotted data. Comments
which include the digitized position are also written to the current journal file (if open). The
WHERE command can be embedded into scripts to allow interactive positioning of color keys,
boxes, lines, and other annotations.

Ch6 Sec4.8. Labeling details with arrows and text

Using the technique described in section 4.7 it is also simple to create a label with a line or arrow
indicating a detail of a plot. Follow the procedure outlined above but select "Line" or "Fancy line"
(arrow) from the menu that appears in the plot window. Then click on the detail which is to be
labeled. The menu will appear again—this time select the justification and click on the label
position.

To see the precise numerical coordinates of the arrow and label use the PPL ECHO ON command
prior to the PPLUS command which redraws the plot. The endpoint coordinates of the arrow will
appear as a comment line which begins with "C LLABS" in the echo file, fort.41. The coordinates
of the label will appear as a comment line which begins with "C LABS". (Easily viewed with
"spawn tail -2 fort.41".)

Ch6 Sec5. COLOR

Ferret and PPLUS use colors stored by index. Storage indices 0 and 1 are used as window
background and foreground colors. Indices 1–6 are reserved for lines. As the user makes SHADE
and FILL requests, each color is assigned to the next available storage index beginning at 7, and
that assignment is automatically "protected" when viewports or color overlays are added.

If your SHADE and FILL commands request more colors than there are storage indices (256), you
will be informed with an error message and the color behavior may become unpredictable. For
example, if you have multiple viewports defined within a window you may run out of color storage
indices. If you are using the same color palette(s) in each viewport, you can free up indices by
canceling the color protections with PPL SHASET RESET. See the examples later in this section
for details on removing color protection. Currently, there is no way to ask PPLUS how many colors
it is using in a plot.

The following discussion is divided into a treatment of text and line colors, and a discussion of
shade and fill color.

Ch6 Sec5.1. Text and line colors note2

By default the background color is white and the text color is black. To reverse these, so the
background is black, call the script "black.jnl". And to restorethe white background, call
"white.jnl". Black and white are the only colors that can be used for the background.

yes? go black
yes? ! ...plot commands...
yes? go white
yes? ! ...more plot commands..

Line type and color for plot commands are most easliy controlled by the command qualifiers
PLOT/COLOR=, PLOT/THICKNESS=, and PLOT/DASH in the Command Reference section (p.
326)

For text, and optionally for plot lines, line type text colors are regulated by use of storage indices
1–6, each index associated with a default color. These are listed in the table in the section "PPLUS
text and line color commands" below (p. 168) It is possible to change the six available line colors
with the PPLUS enhancements command COLOR. (See Plotplus Plus: Enhancements to Plotplus.)
 When you create a plot with multiple data lines, Ferret automatically draws each line in a different
color. By default, axes, labels, and the first data line are all drawn in the same color. You can
modify this behavior with the following Ferret and PPLUS commands.

Ch6 Sec5.1.1. Ferret color controls for lines

Plotted line colors can be set using the /COLOR= qualifier on PLOT, CONTOUR, VECTOR, or
POLYGON commands. The available colors are black, red, green, blue, lightblue, purple, and
white. In addition, starting with Ferret version 5.4, the user has direct control over dashed lines,
and can combine them with choices of colors and thickness.

Plotted colors and line type may also be set with the older syntax

yes? PLOT/LINE=n
yes? VECTOR/PEN=n
yes? CONTOUR/PEN=n

where "n" is an integer between 1 and 18.

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/_FN_2.htm

More direct control over line color and thickness is available with the qualifiers /COLOR and
/THICKNESS and the line type is controlled with /DASH, /SYMBOL=, and /SIZE=

Examples

1) Overlay three lines

yes? PLOT/i=1:10 1/i

yes? PLOT/OVER/COLOR=green/i=1:10 1/(i+3)

yes? PLOT/OVER/i=1:10/COLOR=purple/THICK=3 1/i+1/(10-i)

2) dashed lines with color and thickness settings

yes? PLOT/DASH/I=1:100 sin(i/5)
yes? PLOT/OVER/DASH=(0.3,0.1,0.3,0.1)/COLOR=RED/THICK/I=1:100 sin(i/7)
yes? PLOT/OVER/DASH=(0.6,0.2,0.1,0.2)/COLOR=RED/THICK/I=1:100 sin(i/9)

3) Symbols with color and thickness settings

yes? PLOT/THICK=2/I=1:100 sin(i/5)

yes? PLOT/OVER/COLOR=red/THICK=3/SYM=4/SIZ=0.10/i=1:100 sin(i/7)

yes? PLOT/OVER/COLOR=green/LINE/SYM=20/SIZ=0.15/i=1:100 sin(i/9)

Ch6 Sec5.1.2. PPLUS text and line color commands

Older syntax uses the PPLUS command PEN (p. 460) to assign a color and thickness index to a
specified pen. The pen colors are also used to set pen colors for labels (see p. 175). The PPL PEN
command takes the form:

yes? PLOT/SETUP var

yes? PPL PEN pen_#, color_thickness

yes? PPL PLOT

where pen_# is the PPLUS pen number and color_thickness is a color and thickness index. PPLUS
uses different pens for different tasks. By default, color_thickness index 1 is assigned to pen 0. The

following chart may be helpful.

pen number default color_thickness index drawing task

0 1 (black or white) axes and labels

1 1 (black or white) first data line

2 2 (red) second data line

3 3 (green) third data line

4 4 (blue) fourth data line

5 5 (cyan) fifth data line

6 6 (magenta) sixth data line

Note: Whether you plot several data lines simultaneously, or use the /OVERLAY qualifier on your
Ferret commands, the color/thickness result will be the same. But the Ferret/PPLUS interaction is
different. When Ferret plots multiple data lines simultaneously, PPLUS automatically cycles
through pen numbers 1 through 6 combined with symbols. Type GO line_samples in Ferret to
see the 36 different line styles. However, if you are using /OVERLAY for additional data lines,
Ferret controls the color_thickness assigned to pen 1 and PPLUS draws each overlay line with pen
1.

Pen numbers range from 0 to 6, and color_thickness indices range from 0 to 18. The values 1 to 18
follow the formula:

 color_thickness = 6 * (thickness - 1) + color

where thickness ranges from 1 to 3 and color from 1 to 6. Type "GO line_thickness" in Ferret to
see actual colors and thicknesses. Further information is in the appendix, "Ferret Enhancements to
PlotPlus, (p. 483)

The special color_thickness index 0 refers to the background color, which produces "invisible"
lines that can be used as "white-out" for special purposes.

The following PPLUS commands use the color_thickness index.

Command Function

@Cnnn uses color_thickness index "nnn" when embedded in a label

PEN sets color_thickness index for each data line (see chart above) (p. 460)

LEV sets color_thickness index for contour plot lines (p. 454) (redundant with
CONTOUR/LEVELS)

Examples

1) Ferret's default behavior—these two plots will look identical

yes? PLOT/i=1:10 1/i, 1/(i+3), 1/i + 1/(10-i) !3 curves with 3 pens
yes? PLOT/i=1:10 1/i !first curve with pen 1
yes? PLOT/OVER/i=1:10 1/(i+3) !overlay with pen 1 (next index)
yes? PLOT/OVER/i=1:10 1/i+1/(10-i) !overlay with pen 1 (next index)

2) select different colors for pens 0 and 1

yes? PLOT/i=1:10/SET 1/i
yes? PPL PEN 1 4 !assign color_thickness 4 to pen 1 (plot curve)
yes? PPL PEN 0 3 !assign color_thickness 3 to pen 0 (axes & labels)
yes? PPL PLOT !render the plot
yes? PPL PEN 0 1 !reset pen 0 to default color_thickness (not\
 reset by Ferret as is pen 1)

3) better way to do above plot:

yes? PLOT/i=1:10/LINE=4/SET 1/i !include line style with qualifer /LINE
yes? PPL PEN 0 3 ; PPL PLOT
yes? PPL PEN 0 1

Ch6 Sec5.2. Shade and fill colors

Colors specified with the PPLUS SHASET command or in pallette files (also called spectrum files)
contain pre-defined color palettes. With Ferret 5.0 there are now three ways to specify how colors
are set in SHADE, FILL, and POLYGON plots: the earlier Percent RGB mapping, and also

By_value and By_level.

The Percent method defines points along an abstract path in RGB color space that runs from 0 to
100 percent. The pallette file bluescale.spk, for example, contains these lines.

 0 0 0 95

 100 95 95 95

The first number on each line is the percentage distance along the path in color space, and the
following numbers are the percents of red, green, and blue, respectively. In this simple two-line
file, the percentage runs from 0 to 100 % and the colors represent a range of blues from dark to
light. The actual colors used by SHADE or FILL are determined by dividing this abstract color
scale into N equal increments, where N is the number of colors, and linearly interpolating between
the red, green, and blue values from the neighboring SHASET percentage points.

For compatibility with older palette files, the Percent RGB mapping method is the default, and pre-
5.0 palette files will be interpreted correctly. Palette files using Percent RGB mapping written out
with Ferret 5.0 will have a slightly different format; for example the bluescale palette saved with
Ferret 5.0 will look like this:

RGB_Mapping Percent

SetPt Red Green Blue

0 0 0 95

100 95 95 95

The first line informs Ferret that the RGB mapping method is Percent. Lines beginning with an
exclamation point are comments and ignored when read in—palette files created or modified using
a text editor can contain comment lines as documentation.

The new RGB mapping method By_value uses color interpolation similar to the Percent method,
with the significant difference that colors are based on the values of the variable being plotted
rather than an abstract zero to 100 percent axis. When you use the same By_value palette in several
plots, identical values of one variable will be represented by the same color in each plot. For
example with the following palette, ocean_temp.spk:

RGB_Mapping By_value

SetPt Red Green Blue

–2.0 80.0 0.0 100.0

0.0 30.0 20.0 100.0

10.0 0.0 60.0 30.0

20.0 100.0 100.0 0.0

30.0 100.0 0.0 0.0

35.0 60.0 0.0 0.0

a particular temperature, say 25 degrees, will have the same color on a SHADE or FILL plot with
levels ranging from 0 to 30, and on a plot with levels between 20 and 30 degrees.

The second new RGB mapping method By_level allows the user to select the precise color to be
used at each level in SHADE and FILL plots. Unlike the other methods, no interpolation of RGB
values is done. Colors specified in the palette will be used exactly as defined. If there are more
SHADE or FILL levels than colors specified, the color palette will repeat. In the following palette,
by_level_rainbow.spk,

RGB_Mapping By_level

Level Red Green Blue

1 80.0 0.0 100.0

2 30.0 20.0 100.0

3 0.0 60.0 30.0

4 100.0 100.0 0.0

5 100.0 0.0 0.0

6 60.0 0.0 0.0

for example, with 6 colors defined and used in a plot with 10 levels, the colors used at each plot
level will be as follows:

Plot level Color

1 1

2 2

3 3

4 4

5 5

6 6

7 1

8 2

9 3

10 4

Ch6 Sec5.2.1. Ferret shade and fill color controls

By default, Ferret will use the PPLUS spectrum file default.spk for shades and fills (normally

default.spk is a Unix soft link to rnb.spk). Ferret comes with many color palettes. The UNIX
command "Fenv" lists the environment variable $FER_PALETTE which is a list of paths to be
searched for palette files (the palette file names all end in .spk). The UNIX command "Fpalette"
allows you to find and examine these files (type "Fpalette -help" at the Unix prompt). You can
easily create your own palette files with a text editor.

Use the Ferret qualifier /PALETTE= with Ferret graphical output commands CONTOUR/FILL and
SHADE to specify a color palette. See the section in this chapter, "Contouring," p. 181, for details
on the CONTOUR qualifier /LEV, which controls colors and dash patterns, as well as sets contour
levels.

 Ferret qualifiers

 /PALETTE= (alias for PPL SHASET SPECTRUM=)

 /LEV=

PALETTE is also a stand-alone command alias; it sets a new default color palette.

Be aware that when you use /PALETTE= in conjunction with /SET_UP, the color spectrum you
specify becomes the new default palette; to restore the default palette use command PALETTE
with no argument.

Ch6 Sec5.2.2. PPLUS shade color commands

Command Function

SHASET Sets colors used by SHADE (p. 481)

SHAKEY Customizes the shade key (p. 481)

SHASET is an enhancement of PPLUS designed for Ferret. You can specify a color spectrum, save
a spectrum, change an individual color in the spectrum, or remove the protection (PPL SHASET
RESET) for colors already on the screen. See Plotplus Plus: Enhancements to Plotplus (p. 481) for
more information.

If you need precise control over each individual RGB color on your plot, run "GO exact_colors",
which contains instructions on modifying individual colors in a palette using SHASET.

The SHAKEY command (see p. 481) allows you to customize the location, size and labelling of
the color key for SHADE and FILL plots.

Examples

1) look at the relief of the earth's surface

yes? SET DATA etopo120
yes? SHADE rose !Ferret's default plot
yes? ! Emphasize land and sea with palette,customize the color key

yes? SHADE/PALETTE=land_sea/SET_UP rose palette

yes? PPL SHAKEY 1,0,0.1,2, , ,1.2,7.2,7.5,8.2

yes? PPL SHADE

2) Perhaps you would like to compare two topography resolutions. To illustrate what happens
when you use more colors than are available, request an excessively large number of levels:

yes? SET DATA etopo120
yes? SET REGION/Y=-20:20
yes? SET VIEWPORT UPPER !upper half
yes? SHADE/LEV=(-8000,8000,100) rose !160 colors, default palette
yes? SET VIEWPORT LOWER !lower half
yes? SET DATA etopo20 !high resolution
yes? SHADE/LEV rose[d=etopo20] !another 160 colors (320 > 256!)
yes? CANCEL VIEWPORT

PPL+ error: You're attempting to use more colors than are available.
 Using SHASET RESET to re-use protected colors may help.

If you reuse the same palette, as in this example, issue PPL SHASET RESET after the first plot.
Now the second picture is made without error:

yes? SET DATA etopo120
yes? SET REGION/Y=-20:20
yes? SET VIEWPORT UPPER
yes? SHADE/LEV=(-8000,8000,100) rose
yes? SET VIEWPORT LOWER
yes? PPL SHASET RESET !reuse color storage indices
yes? SET DATA etopo20
yes? SHADE/LEV rose[d=etopo20]
yes? CANCEL VIEWPORT

Ch6 Sec6. FONTS

Ch6 Sec6.1. Ferret font and text color

By default, Ferret produces all plot labels using the fonts ASCII Simplex (code AS) and ASCII
Complex (code AC). For upper and lower case letters these fonts are identical to the fonts Simplex
Roman (SR) and Complex Roman (CR), respectively. In addition, however, fonts AS and AC
include the complete set of ASCII punctuation characters and ignore the special PPLUS
interpretations of the characters "^" (superscript), "_" (subscript), and "@" (change font or pen).
Using a text editor, the ESCAPE character (decimal 27) may be inserted before the special
characters to restore their special interpretation.

The Ferret command CANCEL MODE ASCII causes Ferret to generate PPLUS labels which have
the font unspecified. When the font is unspecified the PPLUS command DFLTFNT determines the
default font and PPLUS responds to the special characters "^", "_", and "@". SET MODE ASCII
restores normal font behavior.

Ch6 Sec6.2. PPLUS font and text color commands

PPLUS commands can be used to customize the font settings. See the examples below, and the
section on PPLUS graphical commands (p. 157) for more on the syntax to make PPLUS calls.

Command Function

DFLTFNT Sets default character font for all labeling.

@AB In a label string, selects the font for which AB is a two-letter abbreviation
(i.e., @CI for complex italic—see PPLUS manual for fonts, p. 474).

@Pn Changes to pen color n (see p. 168 for corresponding colors)

Note that many ASCII punctuation characters are printable only in ASCII simplex and complex

fonts. In all other fonts these characters "@", "^", and "_" have special meanings: @ = font change;
^ = superscript; _ = subscript.

Examples

1) axis labels in custom fonts (Figure 6_7)

yes? PLOT/SET/i=1:10/NOLAB 1/i
yes? PPL XLAB @CImy x-axis label
yes? PPL YLAB @GEmy y-axis label
yes? PPL PLOT

2) set default font for all labeling (Figure 6_8)

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig07.GIF
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig08.GIF

yes? CANCEL MODE ASCII
yes? PPL DFLTFNT CS !complex script
yes? PLOT/I=1:100/TITLE="sin curve" sin(i/6)
yes? SET MODE ASCII
yes? PPL DFLTFNT SR !numeric axis labels unaffected by SET MODE ASCII

Ch6 Sec7. PLOT LAYOUT

Ch6 Sec7.1. Ferret layout controls

Layout of plots can be controlled with commands which modify window size and aspect ratio, and
viewports.

 Ferret command

 SET WINDOW/SIZE=/NEW/ASPECT=

 DEFINE VIEWPORT/XLIMITS=/YLIMITS=/TEXT= view_name

 SET VIEWPORT view_name

 CANCEL VIEWPORT

Ch6 Sec7.1.1. Viewports

A viewport is a sub-rectangle of a full window. Viewports can be used to put multiple plots onto a
single window. Issuing the command SET VIEWPORT is best thought of as entering "viewport
mode." While in viewport mode all previously drawn viewports remain on the screen until
explicitly cleared with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multiple plots
are drawn in a single viewport without the use of /OVERLAY the current plot will erase and
replace the previous one; the graphics in other viewports will be affected only if the viewports
overlap. If viewports overlap the most recently drawn graphics will always lie on top, possibly
obscuring what is underneath. By default, the state of "viewport mode" is canceled. A number of
the most commonly desired viewports are pre-defined.

Ch6 Sec7.1.2. Pre-defined viewports

Name Description

FULL full window

LL lower left quadrant of window

LR lower right quadrant of window

UR upper right quadrant of window

UL upper left quadrant of window

RIGHT right half of window

LEFT left half of window

UPPER upper half of window

LOWER lower half of window

Example: Graphics Viewports

Plot four variables from coads_climatology into the four quadrants of a single window (Figure
6_9).

yes? SET DATA coads_climatology
yes? SET REGION/@W/L=8
yes? SET VIEWPORT LL
yes? CONTOUR sst !sea surface temperature
yes? SET VIEWPORT LR
yes? CONTOUR airt !air temperature
yes? SET VIEWPORT UL
yes? CONTOUR slp !sea level pressure
yes? SET VIEWPORT UR
yes? VECTOR/XSKIP=4/YSKIP=4 uwnd,vwnd !zonal wind, meridional wind
yes? CANCEL VIEWPORT

Ch6 Sec7.1.3. Advanced usage of viewports

For the purposes of defining viewports, a graphics window is considered to have length 1 and
height 1. All viewport commands refer to positions relative to the current aspect ratio of the
window. Thus,

yes? DEFINE VIEWPORT/XLIM=.5,1/YLIM=.5,1 V5

will locate the origin of viewport V5 in the upper right of the output window regardless of the
shape of the window.

yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM= 0,.3 V1
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.3,.6 V2
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.6,.9 V3

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig09.GIF

defines three viewports; each takes a third of the height of the page, and the entire width.

The qualifiers /XLIMITS=x1,x2 and /YLIMITS=y1,y2 allow the user to specify a portion of the
graphics window to be the defined viewport. The arguments must be values between [0,1] (NOT
world coordinates). x1 and x2 indicate the lower and upper bounds for the length of the window to
be defined as the viewport; y1 and y2 serve an analogous purpose for height.

The /TEXT=n qualifier allows the user control over the shrinkage or enlargement of text on the
plot. A value of /TEXT=1 indicates that the text size should be the same as it is on the full screen
output. If a value less than 1 is specified the text will shrink. If a value is not specified Ferret
chooses a value appropriate to the viewport size. Acceptable values are 0 < n < inf. but only values
up to about 2 yield useful results.

Ch6 Sec7.2. PPLUS layout commands

The following PPLUS commands can be called to customize the plot layout. See the section on
PPLUS graphical commands for how to call PPLUS plot commands (p. 157)

Command Function

ORIGIN sets distance of plot origin from lower left corner (p. 459)

BOX controls drawing of a box around the plotting area (p. 446)

CROSS controls drawing of lines through (0, 0) on graph (p. 448)

ROTATE rotates plot by 90 degrees on screen and plotter (p. 463)

AXLEN sets axis lengths (p. 445)

SHAKEY locates the color key (p. 481)

VECKEY locates the vector key (p. 469) (see also the VECTOR/NOKEY qualifier,p.
382)

AXSET includes/excludes particular axes (p. 446) (see also PLOT/AXES=,
 CONTOUR/axes=, etc., p. 328)

SIZE sets the overall size of the graphics window (p. 464)

Example:

A small plot, rotated 90 degrees, positioned with its origin at (4,4) on the plot page. Use the
/AXES qualifier to plot just the left and bottom axes.

yes? PPL BOX ON
yes? PPL ORIGIN 4,4
yes? PPL CROSS ON
yes? PPL ROTATE ON
yes? PPL AXLEN 2,2
yes? PLOT/I=1:30/AXES=0,1,1,0 sin(i)

Ch6 Sec7.3. Controlling the white space around plots

The location and size of the axis rectangle within the viewport or window determines the amount
of white space surrounding a plot. Complete control over this is possible using low level controls,
DEFINE VIEWPORT/TEXT_PROMINENCE, PPL ORIGIN, and PPL AXLEN, but these
commands are sometimes awkward to work with. A simpler strategy is to use the GO tool

yes? GO margins

When given without arguments this command will report the amount of white space surrounding a
plot. With arguments it will adjust the axis origins and lengths according to the requested margins.
Try the Unix command

> Fgo -more margins

for further documentation.

Ch6 Sec8. CONTOURING

Ch6 Sec8.1. Ferret contour controls

The following qualifiers to the Ferret command CONTOUR allow customization of a contour plot.

Qualfier Function

/FILL produces a color-filled contour plot (command FILL is an alias for
CONTOUR/FILL)

/LEVELS specifies contour levels, dash patterns, line thickness and color

/KEY turns on display of color key for color-filled contour plots (default)

/NOKEY turns off display of color key for color-filled plots

/NOAXIS turns off display of X and Y axes (useful for map projections)

/LINE adds contour lines to a color-filled plot (lines replace key)

/PALETTE= specifies a color palette for color-filled contour plot

/PEN= sets line style for contour lines (same arguments as PLOT/LINE=. See the
section in this chapter, "Text and Line Colors," p. 168.)

Ch6 Sec8.1.1. /LEVELS qualifier

The /LEVELS qualifier is a powerful and multi-functional tool. It takes the form
/LEVELS=levels_descriptor

/LEVELS without an argument /LEVELS instructs Ferret to reuse CONTOUR or SHADE levels
from the last CONTOUR or SHADE plot

/LEVELS=n specifying a simple numerical argument such as /LEVELS=25 instructs Ferret to
select approximately 25 levels automatically, based upon the limits of the data to be plotted

/LEVELS=nC (centered levels) appending a "C" to the suggested number of levels instructs Ferret
to select levels which are centered about the zero level. Such levels are suitable for zero-symmetric
quantities such as anomalies and velocity components.

/LEVELS=x.xD (delta levels) Use of "D" as a suffix instructs Ferret to use the preceding value
as the delta value between contour levels. Thus /LEVELS=0.25D will cause Ferret to select
contour levels that span the range of the data to be contoured with a delta value of 0.25 between
contour levels. The "D" and "C" notations can be combined. For example, /LEVELS=0.25DC
instructs Ferret to create zero-centered levels with a delta of 0.25 spanning the range of the data.

/LEVELS=(lo, hi, delta)
or
/LEVELS=(lo, hi, delta, ndigits)
or
/LEVELS=(value)

where ndigits is the number of decimal places to use on contour levels as
-1 for integer format
 or
-3 to omit numerical labels

When a CONTOUR or SHADE plot is finished, the levels that were used are stored in a set of
symbols so the settings can be used again or modified for subsequent plots. These symbols are

LEV_MIN minimum level used

LEV_MAX maximum level used

LEV_NUM number of levels used

LEV_DEL Delta between values, if the levels were uniform, or "irregular"

LEV_TXT The argument to the levels qualifier

Examples

 Note that by default the contour lines of negative values will be dashed and the zero contour will
be a heavy (DARK) line. See also (p.) for selecting color and thickness with the PEN option,
below.

/LEVELS=(-20,10,2) ! basic low,high,delta

/LEVELS=(5) ! a single level at 5

/LEVELS=(-20,10,2,-3) ! suppress numerical contour labels

/LEVELS=40 ! approximately 40 automatically selected
levels

/LEVELS=40C ! approximately 40 automatic levels
centered equally about zero

/LEVELS=0.2D ! automatic levels with a delta value of
0.2

/LEVELS=0.2DC ! automatic zero-centered levels with a
delta value of 0.2

Refinements to the basic levels may be applied using the syntaxes below. If blanks are included,
surround the entire levels descriptor in double quotation marks.

To request additional levels, simply append additional (lo, hi, delta) and/or (value) specifiers.

To specify the line type as dark (heavy line), append DARK(lo, hi, delta) or DARK(value). Similar
syntax can be applied to LINE (solid, thin) or DASH.

/LEVELS="(-100,100,5)DARK(-
100,100,25)"

! heavy line on multiples
of 25

/LEVELS="(0,10,2) DASH(2,10,2)" ! use dashed lines for
positive values

To remove selected levels, append the specifier DEL(lo, hi, delta) or DEL(value).

 /LEVELS="(-10,10,2) DEL(0)" ! -10 to 10 by 2's with the zero
contour removed

To specify the color_thickness index of contour lines (see the section in this chapter, "Color, " p.
168, for a discussion of color_thickness indices), append PEN(lo, hi, delta, index).

/LEVELS=(0,1,.2) PEN(.6,1,.2,2) ! use pen #2 (red) for the
upper contour levels

/LEVELS="(-100,100,10) PEN(-100,-
10,10,2) PEN(10,100,10,4)"

 ! Use Pen 2 (red) for negative
levels and pen 4 (blue) for
positive levels.

To apply the previous levels to a new plot, use the /LEVELS qualifier alone. To do more, the
levels symbols let you apply the settings in new ways:

yes? USE coads_climatology
yes? CONTOUR/L=1 sst
yes? SHOW SYM LEV*
LEV_MIN = "-5"
LEV_MAX = "35"
LEV_NUM = "9"
LEV_DEL = "5"

yes? SHADE/L=5/LEV=(($LEV_MIN), ($LEV_MAX), 2) airt
yes? SHOW SYM LEV*
LEV_TEXT = "(-5, 35, 5)"
LEV_MIN = "-5"
LEV_MAX = "35"
LEV_NUM = "21"
LEV_DEL = "2"

Ch6 Sec8.2. PPLUS contour commands

PPLUS commands can be used to customize contouring settings. Note that Ferret makes settings
for all of these automatically; you will only need to make PPLUS calls to change the properties of
the plot. See the examples below, and the section on PPLUS graphical commands (p. 157) for
more on the syntax to make PPLUS calls.

CONPRE

sets prefix for contour labels (usually a font, e.g., "@TR") (p. 446)

CONPST

sets suffix for contour labels (usually units, e.g., "cm") (p. 447)

CONSET

controls various aspects of contour labels and curves (see below)

CONSET is a modified version of the PPLUS command. Two new parameters have been
added—"spline_tension" and "draftsman". "spline_tension" controls a spline fitting routine for
contour lines, and is primarily used in conjunction with the narc parameter. The new parameter
"draftsman" enables the user to specify horizontally oriented contour labels (draftsman style) or the
default, labels oriented along contour lines. Arguments for CONSET are as follows:

CONSET hgt,nsig,narc,dashln,spacln,cay,nrng,dslab,spline_tension,draftsman

hgt = height of contour labels. default=.08 inches

nsig = no. of significant digits in contour labels. default=2

narc = number of line segments to use to connect contour points. default=1

dashln = dash length of dashes mode. default=.04 inches

spacln = space length of dashes mode. default=.04 inches

cay This argument has no effect on gridded data. It is documented in PLOT PLUS for Ferret
User's Guide (p.447).

nrng This argument has no effect on gridded data. It is documented in PLOT PLUS for Ferret
User's Guide (p. 447).

dslab= nominal distance between labels on a contour line. default=5.0 inches.

spline_tension = a real value that affects the fit of the contour line. default=0. This parameter is
only applied if narc is greater than 1. Otherwise, straight lines are drawn between data points and
no interpolated points are contoured. This value indicates the curviness desired.

abs(spline_tension) is nearly zero (e.g., .01). The resulting curve is approximately a cubic spline.

abs(spline_tension) is large (e.g., 10.). The resulting curve is nearly a polygonal line.

spline_tension = 0. The resulting curve is a cubic spline (the default algorithm in ppl).

A typical value for spline_tension is 1, and the typical useful range of values is .01 to 10.

draftsman = a real value that controls the label format. default = 0.

 0. = original label style—labels oriented along contour arcs

 > 0. = draftsman label style—labels oriented horizontally on the page

 < 0. = reserved for future use

Examples

Run the demonstration on custom contouring for many examples of label styles, contour line styles
(color, thickness dash pattern), and contour intervals— yes? GO custom_contour_demo

1) Color-filled contour plot of sea surface temperature

yes? SET DATA coads_climatology
yes? SET REGION/@t/l=6 !specify tropical Pacific, month 6
yes? SET VIEWPORT upper
yes? FILL sst !filled contour plot
yes? SET VIEWPORT lower
yes? FILL/LINE sst !make the plot with contour lines

2) Let's improve on the earlier example (5.2.2) of shaded bathymetry with blue palette

yes? SET DATA ETOPO60
yes? LET/TITLE="Surface relief x1000 (meters)" r1000 rose/1000
yes? FILL/PAL=ocean_blue/LINE/LEV=(-8,-1,1,-3)LINE(-8,-1,1,-3)/PEN=4 r1000

Here is a breakdown of the final command line:

FILL color-filled contour plot (alias for CONTOUR/FILL)

PAL specifies color palette for fill colors

LINE specifies that contour lines be overlaid on the filled plot (in lieu of a key)

LEV first arg specifies contour levels without numerical labels, next requests solid lines
(dashed lines are the default for negative contour values)

PEN assigns line style 4 (blue) to contour lines

Ch6 Sec9. PPLUS SPECIAL SYMBOLS

PPLUS defines a number of global symbols which are available to the user with SHOW SYMBOL
They are documented in the PPLUS Users Guide (p. 423), and listed here. These are not defined
until associated plot commands have been issued. Also note that the user cannot redefine the
value of these symbols.

Example: draw a plot and examine and use some of the symbols

yes? plot/i=1:10 1./i

yes? SHOW SYMBOL ppl$xlen
PPL$XLEN = "8.000"
 ! Try to show an undefined variable (no response)
yes? SHOW SYMBOL ppl$lf_var

yes? SHOW SYMBOL ppl$line_count
PPL$LINE_COUNT = " 1"

yes? LET my_xlen = (pplxlen) - 1.

DEFINE VARIABLE my_xlen = 8.00 - 1.

yes? LABEL/NOUSER my_xlen, 0.1, -1, 0, 0.1 "label at my_xlen"

SYMBOL COMMAND DESCRIPTION

PPL$EOF RD,RWD,SKP "YES" if an EOF (end of file) was read.

PPL$FORMAT FORMAT The current format.

PPL$HEIGHT SIZE Height of the box.

PPL$INPUT_FILE RD,SKP,RWD The current input file.

PPL$LF_A LINFIT Constant from fit y= a + b*x

PPL$LF_A_STDEV LINFIT Standard error of A.

PPL$LF_B LINFIT Constant from fit.

PPL$LF_B_STDEV LINFIT Standard error of B.

PPL$LF_R2 LINFIT Regression coefficient squared.

PPL$LF_RES_VAR LINFIT Residual variance.

PPL$LF_VAR LINFIT Total variance.

PPL$LINE_COUNT - The number of the last line read.

PPL$PLTNME PLTNME The name of the plot file.

PPL$RANGE_INC %RANGE See Advanced Commands Chapter

PPL$RANGE_HIGH %RANGE See Advanced Commands Chapter

PPL$RANGE_LOW %RANGE See Advanced Commands Chapter

PPL$TEKNME TEKNME The name of the tektronix file.

PPL$VIEW_X VPOINT X viewpoint

PPL$VIEW_Y VPOINT Y viewpoint

PPL$VIEW_Z VPOINT Z viewpoint

PPL$WIDTH SIZE Width of the box.

PPL$XFACT(n) TRANSXY Xfact for line n.

PPL$XLEN AXLEN Length of X axis.

PPL$XOFF(n) TRANSXY Xoff for line n.

PPL$XORG ORIGIN Distance between origin and left edge.

PPL$XFIRST(n) - X value for first data point in line n.

PPL$XLAST(n) - X value for last data point in line n.

PPL$XMAX RD Xmax of contour grid

PPL$XMIN RD Xmin of contour grid

PPL$XMAX(n) - Xmax for valid data in line n.

PPL$XMIN(n) - Xmin for valid data in line n.

PPL$YFACT(n) TRANSXY Yfact for line n.

PPL$YLEN AXLEN Length of Y axis.

PPL$YOFF(n) TRANSXY Yoff for line n.

PPL$YORG ORIGIN Distance between origin and bottom
edge.

PPL$YFIRST(n) - Y value for first data point in ine n.

PPL$YLAST(n) - Y value for last data point in line n.

PPL$YMAX RD Ymax of contour grid

PPL$YMIN RD Ymin of contour grid

PPL$YMAX(n) - Ymax for valid data in line n.

PPL$YMIN(n) - Ymin for valid data in line n.

PPL$ZMAX - Zmax for valid contour data.

PPL$ZMIN - Zmin for valid contour data.

Ch6 Sec10. MAP PROJECTIONS AND CURVILINEAR
COORDINATES

Ch6 Sec10.1. Three-argument (curvilinear) version of SHADE, FILL,
CONTOUR, and VECTOR

The SHADE, FILL, CONTOUR and VECTOR commands now have a 3-argument mode which
allows them to create output in "curvilinear" coordinates. This allows for easy generation of output
plots using sigma coordinates as well as the application of various map projections. A typical
command line entry will look like:

yes? SHADE sst, x_page, y_page

yes? VECTOR/OVER/PEN=1 uwnd, vwnd, x_page, y_page

where the last two arguments, x_page(i,j) and y_page(i,j), must be (at least) 2-
dimensional grids which specify the X page (horizontal) position and Y page (vertical) position for
each (i,j) index pair. The page positions may be in any units; Ferret will scale the plot
according to the ranges of values in the position fields.

Notes:

1. The default axis labeling for the 3-argument commands will be the ranges of the position fields:
inappropriate when map projections are being used. The /NOAXIS qualifier is provided for this
purpose.

The /NOAXIS qualifier causes the axes and axis labels to be omitted from the plot. The qualifier
has been added to support the curvilinear coordinate and map projection capabilities of the 3-
argument versions of SHADE, FILL, CONTOUR and VECTOR in which linear axes are
inappropriate.

2. In the 3-argument SHADE syntax you can specify either the coordinates of the points or the
coordinates of the cell boundaries. In the command

yes? SHADE values, xcoords, ycoords

say that nVx is the size of the "x" dimension of the values argument, and nCx is the size of the
"x" dimension of the coordinate arguments.

 If nCx = nVx then the xcoords argument is presumed to give the locations of the points in the
values argument and (as you say), the boundaries between points are computed to be the midpoints.

However, if nCx = nVx + 1 then the xcoords and ycoords arguments are presumed to give the
locations of the boundaries. For an example see the FAQ on Using the 3-argument SHADE
command. In all cases the size of the xcoords argument must match the size of the ycoords
argument.

Ch6 Sec10.2. Gridded data sets on curvilinear coordinates

If a given gridded variable is defined on a curvilinear coordinate system, then one need only
provide the X and Y coordinate fields in the 3-argument SHADE or FILL command to accurately
depict the field. For example, if a data set contained a variable TEMP, which was Nx x Ny in the
longitude-latitude plane, and the data set also contained variables LON_POSITION and
LAT_POSITION of the same size, then the command:

yes? SHADE TEMP, LON_POSITION, LAT_POSITION

http://www.ferret.noaa.gov/Ferret/FAQ/graphics/curvilinear_edges.html
http://www.ferret.noaa.gov/Ferret/FAQ/graphics/curvilinear_edges.html

would render the curvilinear plot.

Ch6 Sec10.3. Layered (sigma) coordinates

The capability to render curvilinear coordinates allows Ferret to display sigma coordinate fields
without interpolating or regridding the variable to be displayed.

In this example the variable flow is defined on the gg grid where the Z axis is in layers. To display
the field we need only create multidimensional fields specifying the relative positions of (i,j) pairs
and use the new curvilinear coordinate commands (Figure 6_10):

yes? let depth = h[k=@rsum]-h/2
yes? set variable/title="DEPTH function"/unit=meters depth
yes? ! regrid 'Y' to the data grid
yes? let ygg = y[g=gg]
yes? set variable/title="Y"/unit=kilometers ygg
yes? shade flow[x=0,l=1], ygg, depth[x=0,i=1]

For a detailed example illustrating the use of curvilinear coordinates to analyze sigma-coordinate

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig10.GIF

fields see the Ferret FAQ Entry, How to handle sigma coordinate output in Ferret.

Ch6 Sec10.4. Map Projections

Along with general capabilities for curvilinear coordinates, version 4.9 of Ferret and later provide a
series of scripts for many common map projections.

Each map projection script will create the following variables:

mp_central_meridian central longitude calculated from the currently set region

mp_standard_parallel central latitude calculated from the currently set region

x_page two dimensional array mapping X world coordinates to page
coordinates

y_page two dimensional array mapping Y world coordinates to page
coordinates

mp_mask mask two hide "back side" data in orthographic or other 3-D
projections

Ch6 Sec10.4.1. Using Map Projection scripts

To create output with a particular map projection you must do the following:

1. run the map projection script

2. associate the variable's grid with the projection: set grid var

3. adjust the window aspect ratio (if desired)

4. multiply the variable of interest by mp_mask (required for "3-D" projections)

5. give the three-argument plotting command

http://www.ferret.noaa.gov/Ferret/FAQ/data_management/sigma_coordinate_demo.html

Example: (Figure 6_11)

yes? use coads_climatology
yes? set region/l=1
yes? go mp_hammer
yes? go mp_aspect
yes? set grid sst
yes? shade/noaxis sst*mp_mask, x_page, y_page

Ch6 Sec10.4.2. Overlays with Map Projections

Overlays can be drawn once a map projection script has been run. To add a filled land mask, sea
level pressure and wind vectors onto our SST map we would issue the following commands
(Figure 6_12):

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig11.GIF

yes? set grid uwnd
yes? go mp_fland
yes? vector/over/pen=1 uwnd*mp_mask, vwnd*mp_mask, x_page, y_page
yes? set grid slp
yes? contour/over/pen=5 slp*mp_mask, x_page, y_page

If, instead, we wished to overlay sea level pressure for the South Atlantic only, we would need to
take advantage of the mp_central_meridian and mp_standard_parallel variables.
Normally, the map projection scripts calculate the central meridian and standard parallel from the
currently set region and generate the x_page and y_page coordinate transformations
accordingly. When we overlay a subregion, we need to rerun the map projection script and pass in
values for mp_central_meridian and mp_standard_parallel so that they are match
the previous values and are not calculated from the subregion associated with the overlay. (Figure
6_13)

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig12.GIF

yes? use coads_climatology
yes? set region/l=1
yes? go mp_hammer
yes? set grid sst
yes? go mp_aspect
yes? shade/noaxis sst*mp_mask, x_page, y_page
yes? go mp_fland
yes? list mp_central_meridian, mp_standard_parallel
 LONGITUDE: 20E to 20E(380)
 LATITUDE: 90S to 90N
Column 1: MP_CENTRAL_MERIDIAN is (MP_X[I=@MAX] + MP_X[I=@MIN])/2
Column 2: MP_STANDARD_PARALLEL is (MP_Y[J=@MAX] + MP_Y[J=@MIN])/2
 MP_CENTRMP_STAND
I / *: 200.0 0.0000
yes? go mp_hammer 200 0
yes? set region/x=60w:20e/y=45s:0n
yes? set grid slp
yes? contour/over slp, x_page, y_page

Note: Had we used go mp_hammer 200 0 in the beginning we would not have had to rerun
mp_hammer.

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch6_fig13.GIF

Ch6 Sec10.4.3. Map Projection scripts

Here is the list of map projection scripts delivered with Ferret. (The techniques used are quite
general and can be applied to most map projections.)

Ferret script Projection name

mp_bonne.jnl Bonne

mp_craster_parabolic.jnl Craster Parabolic

mp_eckert_greifendorff.jnl Eckert Grifendorff

mp_eckert_iii.jnl Eckert III

mp_eckert_v.jnl Eckert V

mp_hammer.jnl Hammer

mp_lambert_cyl.jnl Lambert Cylindrical Equal Area

mp_mcbryde_fpp.jnl McBryde Flat Polar Parabolic

mp_orthographic.jnl Orthographic

mp_plate_caree.jnl Plate Caree

mp_polyconic.jnl Polyconic

mp_sinusoidal.jnl Sinusoidal

mp_stereographic_eq.jnl Stereographic Equatorial

mp_stereographic_north.jnl Stereographic North

mp_stereographic_south.jnl Stereographic Soutth

mp_vertical_perspective.jnl Stereographic South

mp_vertical_perspective.jnl Vertical Perspective

mp_wagner_vii.jnl Wagner VII

mp_winkel_i.jnl Winkel I

Here is the list of utility scripts that support curvilinear coordinates

Ferret script Function

mp_demo.jnl demonstration of various map projections

mp_fland.jnl curvilinear version of fland.jnl

mp_graticule.jnl creates a graticule (lines of longitude and latitude) over the whole
globe or any portion

mp_grid.jnl Associates a data grid with a predefined map projection.

mp_label.jnl correctly places labels using lat-lon coordinates

mp_land.jnl curvilinear version of land.jnl

mp_land_stripmap.jnl creates a land-centric interrupted map using the current projection

mp_line.jnl correctly plots user lat-lon data on the map

mp_ocean_stripmap.jnl creates an ocean-centric interrupted map using the current projection

mp_polygon overlays a "map projected" polygon

CH7

Chapter 7: HANDLING STRING DATA:
STRING VARIABLES AND "SYMBOLS"

Ferret offers a variety of tools for manipulating strings through the use of
"symbols" (variables defined to be strings). In addition, beginning with Version
5.4, string variables are supported, with much the same syntax as for numeric
variables.

Ch7 Sec1. STRING VARIABLES

String variables are defined using DEFINE VARIABLE (or its alias LET). They
can be read from and written to NetCDF files. Arrays of strings may be defined
and a limited number of algebraic operations are defined for string variables. They
can be passed to go scripts and functions. Grave accents around a scalar string
return the string.

yes? LET astring = "hello everyone"
yes? LIST/NOHEAD astring
 "hello everyone"
yes? message `astring`
!-> message hello everyone
hello everyone
 Hit Carriage Return to continue

Ch7 Sec1.1. String arrays

Strings in arrays may be of variable length. The syntax {"a","b","c"} denotes an
array of strings. Two commas in a row denotes a null (missing value) string.
Single and double quoted strings are both allowed, but must match for an

individual string, e.g. 'P" is not valid.

Examples: the following define and list valid string arrays:

yes? LET a = {"s1","s2", ,"s3"}

yes? LIST a
 {"s1","s2", ,"s3"}

 1 / 1:"s1"
2 / 2:"s2"
3 / 3:""
4 / 4:"s3"

yes? LET b = {, 'string1','s2',,'cccc'}
yes? LIST/i=3:5 b
 {, 'string1','s2',,'cccc'}
3 / 3:"s2"
4 / 4:""
5 / 5:"cccc"

yes? LET c = {'p', 'q', 'a longer string'}
yes? LIST/NOHEAD/ORDER=x c
 "p" "q" "a longer string"

Ch7 Sec2. STRING FUNCTIONS

A number of functions are available for working with string variables. They are
described in the following sections. See also the section later in this chapter,
"PLOT+ string editing tools" (p. 204) for more ways to manipulate

Ch7 Sec2.1. STRCMP(string1, string2)

string1: string
string2: string
result: real

Compares two strings or string arrays. It computes the numerical difference in
ASCII character value for the first character that differs between the two strings
returns a number, > 0 if string1 > string2, 0 if they are equal and < 0 if string1 <
string2.

Examples:

yes? list strcmp("b",{"a","b","c"})
 VARIABLE : STRCMP("b",{"a","b","c"})
 SUBSET : 3 points (X)
1 / 1: 1.000
2 / 2: 0.000
3 / 3: -1.000

yes? list strcmp({"a","b","c"},YSEQUENCE({"a","b","c"}))
 VARIABLE :
STRCMP({"a","b","c"},YSEQUENCE({"a","b","c"}))
 SUBSET : 3 by 3 points (X-Y)
 1 2 3
 1 2 3
1 / 1: 0.000 1.000 2.000
2 / 2: -1.000 0.000 1.000
3 / 3: -2.000 -1.000 0.000

yes? let a = "a longer string"
yes? list strcmp (a,"a longer stringg")
 VARIABLE : STRCMP (a,"a longer stringg")
 -103.0

Ch7 Sec2.2. STRLEN(string1)

string1: string
result: real

Returns the length of the string passed in string string1

Ch7 Sec2.3. UPCASE(string1)

string1: string
result: string

Returns the string passed in string string1 in all upper case characters

Ch7 Sec2.4. DNCASE(string1)

string1: string
result: string

Returns the string passed in string string1 in all lower case characters

Ch7 Sec2.5. STRINDEX(string1, substring)

string1: string
substring: string
result: real

Locates last occurence of string substring in string string1. Returns a 0 if substring
doesn't exist in string1. If substring contains a zero character string (i.e. ""), the
function returns string1

Ch7 Sec2.6. SUBSTRING(string1, offset, len)

string1: string
offset: integer
len: integer
result: string

Returns substring of length len from string string1 beginning from character offset
in string1. If offset is 0, or if offset is greater than the length of string string1, a
NULL value is returned. If length len exceeds the total length of string string1, the
value of string string1 starting at offset is returned.

Ch7 Sec2.7. STRCAT(string1, str2)

string1: string
string2: string
result: string

Append a copy of string string2 onto string string1.

Ch7 Sec2.8. STRFLOAT(string1)

string1: string
string2: real

Return float value of string string1 (e.g. STRFLOAT("3.14"))

Ch7 Sec2.9. SPAWN command

The SPAWN command executes a Unix system command and returns the result in
a string array. The syntax SPAWN:"command" inside a string array definition
allows the output of a Unix command to be mixed with other strings.

Examples:

LET a = {"first.nc", SPAWN:"ls *.nc","last.nc"}

Say we want to check whether a file is in the directory. We do not want a null
result, so start with a dummy string. If "myfile.nc" exists, there will be 2 entries in
array a.

yes? LET a = {"dummy", SPAWN:"ls myfile.nc"}

yes? LET nfiles = `a,RETURN=IEND`

yes? IF `nfiles EQ 2` THEN ...

Ch7 Sec2.10. Algebraic operations with string variables.

A number of algebraic operations are available for string variables. They are
described in the following sections.

Ch7 Sec2.10.1. Logical operators with strings

The operators EQ, LT, LE, ... can be applied to string variables and arrays. These
operators are case-insensitive (functions will be provided later that are case-
sensitive and include UPCASE, DNCASE)

Examples:

yes? LIST/NOHEAD {"a","b","c"} EQ {"A","B","C"} ! case
insensitive
1 / 1: 1.000

2 / 2: 1.000
3 / 3: 1.000

yes? LIST/NOHEAD"b" GT {"a","b","c"}
1 / 1: 1.000
2 / 2: 0.000
3 / 3: 0.000

Ch7 Sec2.10.2. Shift transformation of string arrays

The shift transformation can be applied to string arrays.

For example:

yes? LET a = {"a","b","c","d"}
yes? LIST a[i=@SHF]
 {"a","b","c","d"}
 shifted by 1 pts on X
1 / 1:"b"
2 / 2:"c"
3 / 3:"d"
4 / 4:""
yes? LIST a[i=@SHF:-1]
 {"a","b","c","d"}
 shifted by -1 pts on X
1 / 1:""
2 / 2:"a"
3 / 3:"b"
4 / 4:"c"

Ch7 Sec2.10.3. Strings in IF-THEN-ELSE

IF cond THEN string_array1 ELSE string_array2

Example:

yes? LIST/NOHEAD IF {0,1} THEN "hello" ELSE "goodbye"
1 / 1:"goodbye"
2 / 2:"hello"

Ch7 Sec2.10.4. String concatenation with "+":

Examples:

yes? let a = "good" + "bye"

yes? LIST/NOHEAD YSEQUENCE({"now","then"})+", " + (if {0,1} THEN
"hello"+", ") + "friend"
1 / 1:"now, friend" "now, hello, friend"
2 / 2:"then, friend" "then, hello, friend"

Ch7 Sec2.10.5. Strings as Function arguments

A few functions also take strings as arguments. String arguments must be enclosed
in double quotes. For example, a function to write variable "u" into a file named
"my_output.v5d", formatted for the Vis5D program might be implemented as

LOAD WRITE_VIS5D("my_output.v5d", a)

SAMPLE* functions may take string or numerical arrays as arguments

 Example:

yes? LIST/NOHEAD SAMPLEI({"a","b","c","d","e","f"},{3,2,,1})
1 / 1:"c"
2 / 2:"b"

3 / 3:""
4 / 4:"a"

yes? LIST/NOHEAD SAMPLEJ(YSEQUENCE ({"a","b","c","d","e","f"}),
{3,2,,1})
1 / 1:"c"
2 / 2:"b"
3 / 3:""
4 / 4:"a"

Ch7 Sec2.10.6. Regridding string arrays

The regridding transformations @ASN, @XACT, @NRST can be used with
character data.

Examples:

yes? LET a = {spawn:"ls *.nc"}
yes? LIST a
 {SPAWN:"ls *.nc"}
1 / 1:"d1.nc"
2 / 2:"d2.nc"
3 / 3:"d3.nc"
4 / 4:"d4.nc"
5 / 5:"d5.nc"
6 / 6:"d6.nc"
7 / 7:"d7.nc"

yes? DEFINE AXIS/X=0.1:0.7:.1 xasn
yes? LIST a[gx=xasn@ASN]
 {SPAWN:"ls *.nc"}
 regrid: 0.1 delta on X@ASN
0.1 / 1:"d1.nc"
0.2 / 2:"d2.nc"
0.3 / 3:"d3.nc"
0.4 / 4:"d4.nc"
0.5 / 5:"d5.nc"
0.6 / 6:"d6.nc"
0.7 / 7:"d7.nc"

yes? DEFINE AXIS/X=1:6:.5 xxact
yes: LIST a[gx=xxact@XACT]
 {SPAWN:"ls *.nc"}
 regrid: 0.5 delta on X@XACT
1 / 1:"d1.nc"
1.5 / 2:""
2 / 3:"d2.nc"
2.5 / 4:""
3 / 5:"d3.nc"
3.5 / 6:""
4 / 7:"d4.nc"
4.5 / 8:""
5 / 9:"d5.nc"
5.5 / 10:""
6 / 11:"d6.nc"

yes? DEFINE AXIS/X=1:6:.4 xnrst
yes? LIST a[gx=xnrst@NRST]
 {SPAWN:"ls *.nc"}
 regrid: 0.4 delta on X@NRST
1 / 1:"d1.nc"
1.4 / 2:"d1.nc"
1.8 / 3:"d2.nc"
2.2 / 4:"d2.nc"
2.6 / 5:"d3.nc"
3 / 6:"d3.nc"
3.4 / 7:"d3.nc"
3.8 / 8:"d4.nc"
4.2 / 9:"d4.nc"
4.6 / 10:"d5.nc"
5 / 11:"d5.nc"
5.4 / 12:"d5.nc"
5.8 / 13:"d6.nc"
6.2 / 14:"d6.nc"

Ch7 Sec2.11. NetCDF input and output of string data

String variables can be input and output to NetCDF files. In the file the string axis
is the fastest moving dimension and all strings are the same length (equal to the

maximum length of the strings being written). Extra character spaces are padded
with nulls. If variable length strings are written out, then when read back they will
again be variable length.

Example:

yes? SAVE/CLOBBER/FILE=test_string.cdf/HEADING=enhanced a[i=2:4]

Ch7 Sec3. SYMBOL COMMANDS

The following are the relevant commands:

DEFINE SYMBOL

 usage:

 DEFINE SYMBOL symbol_name = string

SHOW SYMBOL

 usage:

 SHOW SYMBOL/ALL

 SHOW SYMBOL symbol_name

 SHOW SYMBOL partial_name

CANCEL SYMBOL

 usage:

 CANCEL SYMBOL/ALL

 CANCEL SYMBOL symbol_name

Legal symbol names must begin with a letter and contain only letters, digits,
underscores, and dollar signs.

To invoke symbol substitution—the replacement of the symbol name with its (text)
value—within a Ferret command include the name of the symbol preceded by a
dollar sign in parentheses.

For example,

yes? DEFINE SYMBOL hi = hello everyone
yes? MESSAGE ($hi) ! issues "hello everyone" msg

It is also possible to nest symbol definitions, as the following commands illustrate:

yes? DEFINE SYMBOL label_2 = My test label
yes? DEFINE SYMBOL number = 2
yes? SAY ($label_($number))
 My test label

Ch7 Sec4. AUTOMATICALLY GENERATED SYMBOLS

A number of useful symbols are automatically defined whenever Ferret sets up a
plot. Following any plotting command issue the command SHOW
SYMBOLS/ALL to see a list. Consult the PLOT PLUS for Ferret Users Guide
(section "General Global Symbols") for detailed descriptions of the plot symbols.
For example, if we wish to place a label “hello” at the upper right corner of a plot
we might do the following

yes? PLOT/I=1:100 SIN(I/6)

yes? LABEL/NOUSER (pplxlen) (pplylen) 1 0 .2 hello

This labeling procedure would work regardless of the aspect ratio of the plot. Use
the command SHOW SYMBOL/ALL to see the symbols (and see "General Global
Symbols" in the PLOT+ Users Guide).

Ch7 Sec5. USE WITH EMBEDDED EXPRESSIONS

When used together with Ferret embedded expressions symbols can be used to
perform arithmetic on the plot geometry. For example, this command will locate
the plot title in bold at the center of a plot regardless of the aspect ratio:

yes? LABEL/NOUSER `(pplxlen)/2` `(pplylen)/2` 0 0 .2
@AC($labtit)

Ch7 Sec6. ORDER OF STRING SUBSTITUTIONS

The above example illustrates that the order in which Ferret performs string
substitutions and evaluates immediate mode expressions in the command line is
significant. The successful evaluation of the embedded expression
`(pplxlen)/2` requires that (pplxlen) is evaluated before
attempting the divide by 2 operation. The order of Ferret string substitutions is as
follows:

1. substitute "GO" command arguments of the form "$1", "$2", ...

2. substitute symbols of the form ($symbol_name) (discussed here)

3. substitute command aliases

4. substitute immediate mode expressions. (But see example 3 below).

Example 1

If the script snoopy.jnl contains

DEFINE SYMBOL fcn = $1
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT=("Result is ",$2)
ANSWER `($fcn)(($3^2)/2)`+5

then the command

yes? GO snoopy EXP F5.2 2.25

would evaluate to

DEFINE SYMBOL fcn = EXP
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT=("Result is ",F5.2)
LIST/NOHEAD/FORMAT=("Result is ",F5.2) `EXP((2.25^2)/2)`+5

and would result in Ferret output of "Result is 17.57."

Example 2

We can use grave accent syntax and string variables to substitute the string into the
command line.

yes? LET my_reg = "X=0:180,Y=-40:40,L=1"
yes? SHADE sst[`my_reg`]

Example 3

Immediate mode substitution of a string variable may be used to set the values of
qualifiers. However the region qualifiers (/X=/Y=etc.) on a command are used to
set the context for the grave accent expression. So Ferret parses command
qualifiers before it parses grave accent expressions. Thus we can use this syntax to
set a region:

yes? let xreg = "40:180"

yes? let yreg = "60S:42S"

yes? set region/x=`xreg`/y=`yreg`

But including the qualifier name in the string variable is NOT valid (the qualifier is
parsed BEFORE the grave accent expression is substituted, so Ferret would issue
the error that `my_region` is an unknown qualifier).

yes? !THE FOLLOWING SYNTAX IS NOT VALID

yes? LET my_region = "x=40:180/y=-60:-42"; set region/`my_region`

Ch7 Sec7. CUSTOMIZING THE POSITION AND STYLE
OF PLOT LABELS

All of the plot labels generated by Ferret are automatically defined as symbols.
This includes the title ($labtit), X and Y axis labels ($labx),($laby), as well as the
position labels (latitude, longitude, depth, time), which are normally placed at the
upper left on a plot (see "Labels," p. 162). Sometimes it is desirable to change the
location, size or fonts of these labels. The symbol facility makes it possible to do
this in a way that is independent of the particular label strings or plot aspect ratio.
See the demonstration script symbol_demo.jnl for an example.

Ch7 Sec8. USING SYMBOLS IN COMMAND FILES

Often in Ferret command files the identical argument substitutions must be
repeated at several points in the file. Using symbols it is possible to write "cleaner"
Ferret scripts in which the argument substitution occurs only once—to define a
symbol which is used in place of the argument thereafter. See the demonstration
script symbol_demo.jnl for an example.

Ch7 Sec9. PLOT+ STRING EDITING TOOLS

The PLOT+ program provides a variety of tools for editing symbol strings. See the
PLOT+ Users Guide for further information (p. 464). The special functions
manipulate and reformat character strings.

Note that many of these functions are handled directly by Ferret string functions
such as STRINDEX, STRLEN, SUBSTRING, etc (p. 196).

The general format is SET sym $function(arg1, arg2,...). The functions are:

$EDIT(symbol,argument) Edit a symbol: change to uppercase,
remove extra blanks, or remove all
blanks

$EXTRACT(start,length,symbol) Extracts selected characters from the
 input string.

$INTEGER(symbol) Converts a number to integer format

 $LENGTH(symbol) Returns the length of the input string

$LOCATE(substring,symbol) Locates a substring in the input string

$ELEMENT(position,delimiter,symbol) Extracts an element from an input
 string in which the elements are
separated by a specified delimiter.

Example:

yes? DEFINE SYMBOL test = my string
yes? PPL SET upper_test $EDIT(test,COMPRESS)
yes? SHOW SYMBOL upper_test

UPPER_TEST = "my string"

Ch7 Sec10. SYMBOL EDITING

Symbols may be edited and checked using the same controls that apply to journal
file arguments.

The section of this users guide entitled "Arguments to GO tools" (p 22) describes
the syntax for checking and editing arguments. The identical syntax applies to
symbols. As with the GO tool arguments (e.g., "$4"), all string manipulations are
case insensitive.

In brief, the capabilities include:

default strings

If a symbol is undefined a default value may be provided using the pattern
($my_symbol%my default string%). For example,

($SHAPE%XY%)

check against list of acceptable values

A list of acceptable string values may be provided using the pattern
($my_symbol%|option 1|option 2|%). For example,

($SHAPE%|X|Y|Z|T|%)

will ensure that only 1-dimensional shapes (X, Y, Z, or T) are acceptable.

string substitution

Any of the optional string matches provided can invoke a substitution using the
pattern ($my_symbol%|option 1>replacement|%). For example,

($SHAPE%|X>I|Y>J|Z>K|T>L|%)

will substitute I for X or J for Y, etc.

Asterisk ("*") provides default substitution

The asterisk character matches any string. For example,

($SHAPE%|X|Y|Z|T|*>other%)

will always result in "X," "Y," "Z," "T," or "other."

Asterisk ("*") provides limited string editing

The asterisk character, when used on the right hand side of a string substitution,
inserts the original symbol contents

($SHAPE%|*>The shape is *|%)

error message control

An error message can be provided if the symbol is undefined or doesn't match any
options. The pattern for this is
($my_symbol%|option 1|option 2|<error message text %). For example,

($SHAPE%|X|Y|Z|T|<Not a 1-dimensional shape%)

Ch7 Sec11. SPECIAL SYMBOLS

There are a few symbols, generated automatically by plots, which are not
documented in the PLOT PLUS for Ferret Users Guide. Those are shown like all
symbols by SHOW SYMBOLS, but cannot be redefined by the user.

PPL$XPIXEL
PPL$YPIXEL

the number of pixels in the horizontal (X) and vertical (Y) size of the current Ferret
output window. Note: these are "0" if there is no current window -- hence they can
be used as a test of whether there is an open window.

BYTEORDER

gives "BIG" or "LITTLE" according to endianness of the CPU

FERRET_VERSION

FERRET_PLATFORM

give the Ferret version and the platform Ferret is running on.

SESSION_DATE
SESSION_TIME

gives the date and time when the current session began.

PPLUS defines a number of global symbols which are available to the user. They
are documented in the PPLUS Users Guide, section 7.3, and listed in the chapter
"Customizing Plots", section PPLUS special symbols (p.185).

http://www.ferret.noaa.gov/Ferret/Documentation/PPLUS_Users_Guide/pplus_users_guide.html

Chapter 8: WORKING WITH SPECIAL
DATA SETS

Ch8 Sec1. WHAT IS NON-GRIDDED DATA?

Many data sets which are not normally regarded as "gridded" can nonetheless be
managed, analyzed, and visualized effectively in a gridded data framework. Track
lines, "point data", etc. are common examples of "non-gridded" data. Profiles and
time series, although they are individually simple one-dimensional grids, have a
non-gridded structure when considered as a collection, which is often essential.

This chapter addresses a number of classes of non-gridded data sets and offers
approaches that make it straightforward to work with these data types in Ferret's
gridded data framework. The approaches are all conceived to facilitate a fusion of
these data types—so that multiple data types may be easily combined in
calculations..

"Point data" refers to collections of values at scattered locations and times. An
example would be the column burden of oceanic NO3 and the scattered locations
and times at which the measurements were made.

● If at each point of the data scattered there is a vertical profile of values then
see COLLECTIONS OF VERTICAL PROFILES (p. 213).

● If at each point of the data scattered there is a time series of values then see
COLLECTIONS OF TIME SERIES (p. 216).

● If at each point of the data scattered there is a 2-dimensional grid in the ZT
plane then see COLLECTIONS OF TIME SERIES (p. 216).

● If at each point of the data scattered there is a time series of values then see
COLLECTIONS OF TIME SERIES (p. 216).

Ch8 Sec2. POINT DATA

In a gridded context point data is best viewed as a collection of 1-dimensional
variables, where the axis of each variable is the index value, 1, 2, 3, ... of the

individual point in the scatter. Thus, continuing our example of an oceanic NO3
data set, we would want to view this as four variables, longitude, latitude, date, and
burden, where each variable was defined on a one-dimensional axis of earthquake
number. Typically, this sort of data is organized in a table of the form

Index longitude latitude year month day N03

1 160 30 1968 11 -999 6.2

2 33.1 60.2 1992 5 13 5.5

...

Ch8 Sec2.1. Getting point data into Ferret

Since point data sets are most commonly available in table form, where the
columns of the table are the variables and each row of the table is a separate point.
In the chapter "Data Set Basics", section "Reading ASCII Files" (p. 41), example 2
and subsequent examples show how such a file might be read into Ferret.

For example, let us suppose that the file above is introduced to Ferret with the
command

 yes? FILE/VAR="index,lon,lat,yr,mn,day,NO3"/SKIP=1
my_data_file.dat
yes? SHOW DATA my_data_file.dat

 currently SET data sets:
 1> ./my_data_file.dat (default)
 name title I J K
 L
 LON LON 1:20480

 …
 LAT LAT 1:20480
 …
 YR YR 1:20480
 …
 MN MN 1:20480
 …
 DAY DAY 1:20480
 …
 NO3 NO3 1:20480
 …

Note that the SET VARIABLE command would normally be used as well to assign
titles, units, and missing value flags to the variables.

Also note that until the first data is actually requested from the file, Ferret does not
know the size of the file. The /GRID= option may be used to tell Ferret what size
to expect. Lacking a /GRID specification the "1:20480" is the size of the default
grid "EZ." After the first data access SHOW GRID will reveal the true size of the
file, instead. If the size still appears to be 20480 it may be that the default grid EZ
was not large enough, and the /GRID qualifier must be used to pre-allocate
sufficient space.

Ch8 Sec2.2. How point data is structured in Ferret

In table form (above) each column represents a dependent variable; the column for
"burden" and the column for "latitude" have equal status. In many cases this is an
adequate representation. For example, a plot of NO3 burden versus latitude could
be produced with the command

yes? PLOT/VS lat, NO3

To combine point data organized in tables with gridded data sources, say a gridded
field of oceanic temperature two approaches are available. Either the gridded data
may be viewed in the structure of the table, or the scattered data may be viewed in
a geo-referenced 1-dimensional grid structure. The problem to be solved
determines which approach is suitable. The next two sections describe these two

approaches.

Ch8 Sec2.2.1. Working with dates

Ferret V5.0 does not understand formatted dates inside of generic data ASCII files.
To use the dates intelligibly inside of Ferret you

1. Need to get the year, month, and day fields broken out separately or provide a
Julian day.

2. Can create a Julian date from year, month, day using function DAYS1900. If a
time origin other that 1-jan-1900 is needed subtract DAYS1900(year0, mon0,
day0)

3. Can create an axis of dates as done in the preceding latitude axis example.

See the chapter "Grids and Regions", section "Time" (p. 137) and the section in the
chapter "Converting to NetCDF" on "Converting time word data to numerical
data" (p. 243) for details of creating time axes.

Ch8 Sec2.3. Subsampling gridded fields onto point locations
and times

Ferret can be used as a tool to extract variables from gridded data sets at time/space
locations to match the scatter of the point data. In this form they may, effectively,
be combined into the table of data read from the ASCII (or binary) file. For
example, suppose we want to obtain values of sea surface temperature at the
locations of our NO3 samples, from a climatological annual average SST field.
This may be accomplished simply with

yes? use coads climatology
yes? let ssttav = sst[l=1:12@ave]

yes? let my_lon = lon[d=my_data_file.dat]
yes? let my_lat = lat[d=my_data_file.dat]
yes? LET sst_xy = SAMPLEXY(ssttav, my_lon, my_lat)

Suppose that instead we defined our XY sampling based upon the 12 month time
series of SST grids as in

 yes? LET sst_xy = SAMPLEXY(sst, my_lon, my_lat)

The variable sst_xy as defined above would then have a two-dimensional structure:
sample index by 12 months. To sample this in time we use

yes? LET sst_t = SAMPLET_DATE(sst_xy,0,mn,day,0,0,0)

Note that the year is entered simply as 0, since SST is a climatological variable.

In this example we sampled a field in X, Y, and T. The sst data was sampled at
each time. If we were sampling a field which had a Z axis, that axis would be
inherited from the first argument to SAMPLEXY in the same way; it would be
sampled at the (x,y) points at each Z level.

Ch8 Sec2.4. Defining gridded variables from point data

There are functions to interpolate scattered data onto a grid. See the
scat2gridgauss and scat2gridlaplace functions (p. 80 ff). These functions map
irregular locations to a regular grid.

For some calculations one may want to let Ferret know which of the variables are
dependent (measurements) and which are independent (coordinates). For example,
suppose we wish to compute the average column burden of NO3 as a function of
latitude. Burden here is an integral of the concentration NO3 over depth. We will
want to see our variable burden on an axis of latitude.

The steps to do this are

1. In general, the latitude variable will not be sorted into strictly increasing order
— needed to create an axis. Determine the sorting order for latitude using

 yes? LET lat_index = SORTI(lat)

2. Create a latitude grid

 yes? DEFINE AXIS/FROM/NAME=lat_ax/Y/UNITS=degrees
SAMPLEI(lat, lat_index)
 yes? DEFINE GRID/Y=lat_ax glat
 yes? LET NEW = Y[g=glat] ! a dummy variable to use in RESHAPE
below

3. Define your function for the burden based on the variable NO3, on the
command line or using your script my_brdn.jnl.

 yes? GO my_brdn NO3 burden

4. Define a new variable burden_on_lat using this axis

 yes? LET sorted_burden = SAMPLEI(burden, lat_index)
 yes? LET burden_on_lat = RESHAPE(sorted_burden, new)

5. Now, to plot the NO3 burden averaged into 5 degree latitude bands we could
use

 yes? PLOT burden_on_lat[Y=60s:30n:5@AVE]

Ch8 Sec2.5. Visualization techniques for point data

Scattered point data can be displayed in a number of ways.

A simple scatter plot showing the locations of points

yes? PLOT/VS lon,lat

yes? GO land

Use GO/help land for an explanation of resolving incompatible longitude
encodings, should they arise.

A scatter plot in which the symbols are colored by value with control over the
color palette and resolution can be made using the polymark.jnl script. For
example, to plot using stars symbols in color levels by 10s use

yes? GO polymark POLYGON/LEV=(0,100,10) lon lat NO3 star.

Type GO/HELP polymark for more options.

See also the chapter "Customizing Plots", section "Map Projections" (p. 187) for
guidance on plotting scattered data. The map projection scripts can be used in
conjunction with the above.

Ch8 Sec3. VERTICAL PROFILES

A single profile, possibly consisting of multiple variables, can be regarded as a
simple 1-dimensional data set. Ferret's plotting and analysis tools apply in a
straightforward manner.

Collections of profiles resemble point data sets in their X,Y, and T structure,
however at each point there is a 1-dimensional Z-axis structure. In general, the Z
axes at each point may differ.

Ch8 Sec3.1. How collections of profiles are structured in
Ferret

If the collection of profiles is sufficiently small (say 4 or fewer) then it is
straightforward to handle them simply as 4 separate data sets. The D= qualifier

may be used to designate which profile is being referred to. The IF ... THEN ...
ELSE syntax may be used to combine the profiles into expressions.

As the number of profiles in the collection grows larger, however, it becomes
necessary to merge them into a single structure. Typically, the sequence number of
the profile, 1, 2, ...,N, becomes the X axis of the collection. The longitude, latitude,
and time of each profile become dependent variables indexed by the sequence
number. The Z structures of the profiles are blended into a single Z axis by a
choice of techniques. The steps to creating a blended data set then become:

1. Determine the nature of the Z axis to be used and the collection of variables to
be defined on the grid

2. Create an empty grid with the desired structure in a file

3. Populate the file with the profiles, each profile in turn.

The determination of the Z axis structure may be by any of these techniques:

1. Supply an arbitrary Z axis to which all of the individual profiles will be
regridded by linear interpolation. This technique produces a data set which is very
easy to work with and small in size, however, some of the data have been altered
by linear interpolation. The default Ferret regridding (GZ=@LIN) is used for this
technique.

2. Create a Z axis which is a superset of the Z axis points from all of the grids. In
the final data set this axis will be sparsely populated, containing only those Z
points that were actually present in each profile.

 This technique produces a data set which is 100% faithful to the original data
and reasonably easy to work with, but may become very large if the number of
profiles is large and the Z axes vary greatly. Ferret "exact match" regridding
(GZ=@XACT) is used for this technique.

3. Do not create a Z axis at all — instead store the Z coordinates as a dependent
variable. The Z axis becomes simply an index counter of length equal to the
longest profile. This technique produces a data set which is 100% faithful to the

original data and of modest size, however it is the most laborious to work with.

The choice of technique depends on the nature of the profile collection and the
types of analysis or visualization to be done. Often it is desirable to combine
technique 1, which is fast and simple with 2 or 3, which can be used for spot
checking if there is a question of data fidelity. If method 3 is chosen (Z coordinates
in a dependent variable) the techniques for handling the variables are very similar
to sigma coordinate data, described in a separate section of this chapter (p. 217).

Ch8 Sec3.2. Getting profile data into Ferret

As of 4/99 the approaches to merging collections of profiles into a single structure
are still "manual." (Data which are stored as global attributes in the input files, as is
done in EPIC files, are lost in this process.) This text describes an example of the
manual process used, where the target Z axis is created arbitrarily and data are
interpolated to it. In this example the profiles are read from ASCII files, so the Z
axis of each profile has to be created. This example does not save the longitude,
latitude, and time positions of the casts.

! for this example we begin by manufacturing some data
! ... pretend this is one of your casts - unequal vertical
spacing
LIST/FILE=test_cast.dat/NOHEAD/FORM=(2F)/I=1:10 10*i+randu(i),
sin(i/6)

! create a grid suitable for ALL casts together
! make the points regular in X and Z ... they need not be,
however
DEFINE AXIS/DEPTH/Z=0:1000:20/UNIT=meters zall ! Arbitrarty z
axis
DEFINE AXIS/X=0:9:1/UNIT="sequence" xall
DEFINE GRID/X=xall/Z=zall gall

! create an empty output file
! if we were reading netCDF files we would create variables to
hold
! longitude, latitude, and time (year, month, day).
! A latitude output variable, for example, is created below

LET outvar = 1/0 * x[g=gall] * z[g=gall]
SET VARIABLE/TITLE="My merged var"/UNITS="my units" outvar
SAVE/FILE=all_casts.cdf/ILIMITS=1:10/ZLIMITS=0:1000 outvar
LET LAT = 1/0*X[gx=gall]
SET VARIABLE/TITLE="Latitude"/UNITS="degrees" lat
SAVE/APPEND/FILE=all_casts.cdf/ILIMITS=1:10 lat

! read in a single cast (the fake data we created)
! if we were reading a NetCDF file this block would be
unnecessary
FILE/VAR=depth,invar test_cast.dat

! make Z axis for 1 profile
DEFINE AXIS/Z/DEPTH/UNIT=meters z1cast=depth

DEFINE AXIS/X=0:0:1/UNIT="sequence" x1cast ! sequence no. of
1st cast
DEFINE GRID/X=x1cast/Z=z1cast g1cast
CANC DATA 1

! save first cast interpolated to many-point Z axis
FILE/VAR="-,invar"/GRID=g1cast test_cast.dat
LET outvar = invar[g=gall]
SAVE/APPEND/FILE=all_casts.cdf outvar[I=1]
CANC DATA 1

! if available, output latitude thusly
! LET lat = 0*X[g=gall] + RESHAPE(Y[G=invar],X[gx=gall])
! SAVE/append/file=all_casts.cdf lat[I=1]

! save next cast

DEFINE AXIS/X=1:1:1/UNIT="sequence" x1cast ! X position of 2nd
cast
FILE/VAR="-,invar"/grid=g1cast test_cast2.dat
SAVE/APPEND/FILE=all_casts.cdf outvar[I=2]
CANC DATA 1

! etc for next 8 casts …
! This may be automated with: REPEAT/I=1:10 GO
output_one_profile
! where the script output_one_profile.jnl reads profile file
names

! from a list

The output data set which we create will be structured as follows:

yes? CANCEL VAR/ALL

yes? USE all_casts
yes? SHOW DATA
 currently SET data sets:
 1> ./all_casts.cdf (default)
name title I J K
 L
OUTVAR My merged var 1:10 ...
 1:51 …
LAT Latitude 1:10
 …

Ch8 Sec3.3. Defining vertical sections from profiles

In the data set created above the profiles may or may not be ordered as needed to
create a valid section. There are many possible ways to order the data. Often more
than one technique is applicable to a single data set. The data may be ordered along
a ship track, ordered by increasing latitude, ordered by path distance along a
regression line, etc.

Continuing with the example above, we can order the profiles into increasing
latitude with:

yes? let order = SORTI(lat)
yes? let section = SAMPLEI(outvar, order)

Other definitions of the variable order may be created by straightforward means to
apply other ordering principles.

As defined above, "section" has an X axis which is the values 1, 2, 3,...N from the

Ferret ABSTRACT axis. To cast this on a proper latitude axis, use these two steps:

yes? DEFINE AXIS/Y/UNITS=degrees yax_sect=SAMPLEI(lat, order)
yes? LET ysection = RESHAPE(section,Y[gy=yax_sect]+Z[gz=all])

Ch8 Sec3.4. Visualization and analysis techniques for profile
sections

The variables "section" and "ysection" defined above may be plotted and analyzed
with the normal gridded plot commands. For examples,

yes? CONTOUR section ! contour plot ordered on X=1,2,3,...
yes? FILL ysection ! color contour plot on formatted latitude
axis
yes? PLOT/Y=20S/Z=100:500 ysection ! profile at 20 south
yes? PLOT ysection[Z=@loc:20] ! depth of 20 degree isotherm

Ch8 Sec3.5. Subsampling gridded fields onto profile
coordinates

The technique described for sampling grids at scattered point values will work
unmodified for collections of vertical profiles. The Z coordinate of the gridded
variable will be retained unmodified throughout the sampling operations. Regrid
the final result variable to other Z axes as desired.

Ch8 Sec4. COLLECTIONS OF TIME SERIES

Handling of collections of time series is analogous to handling collections of
vertical profiles, described above. The choices of

1. a single interpolated time axis (using the default, GT=@LIN, regridding)

2. a super-set of all times axis (using "exact match," GT=@XACT, regridding)

should be considered. Choice 3, in which time would be handled as an independent
variable, is possible, but awkward, due to the multiplicity of time encodings.

Ch8 Sec5. COLLECTIONS OF 2-DIMENSIONAL GRIDS

Handling collections of 2-dimensional grids (e.g. ZT grids from acoustic current
profilers) is a straightforward extension of the techniques described under
collections of profiles. If the time axes of the input grids are all identical, no
additional work is needed beyond the techniques described there. If the time axes
differ then follow the guidance given under Collections of Time Series, using
intermediate variable definitions that reconcile the time axes into a single uniform
axis before saving the input variables into a merged output file.

Ch8 Sec6. LAGRANGIAN DATA

Lagrangian data (ship tracks, drifters, etc.) is a special case of scattered point data
described in a preceding section. In the terminology of "Defining gridded variables
from point data" Lagrangian data is simply point data organized onto a 1-
dimensional time axis grid.

Ch8 Sec6.1. Visualization techniques for Lagrangian data

Ferret has several visualization tools that specifically address the needs of
Lagrangian data. There are three scripts:

polymark (polymark_demo) marks value-colored symbol at each location

polytube (polytube_demo) creates a line following the Lagrangian track with
color varying according to a Lagrangian variable

trackplot (trackplot_demo) creates a line plot of a Lagrangian variable where
the zero line of the plot follows the Lagrangian
track

Overlays of the trackplot script are useful to visualize more than one variable. Run
the demonstration scripts noted above for each tool for an example of its use with
Lagrangian data.

Ch8 Sec7. SIGMA COORDINATE DATA

With sigma coordinate data the vertical coordinate (or layer thickness) is available
as a dependent variable and the Z axis of the sigma-encoded variables is layer
number (the Z index). This is precisely analogous to method 3 of handling
collections of profiles, above.

See also the FAQ on Using Sigma Coordinates.

Ch8 Sec7.1. Visualization techniques for sigma coordinate
data

Visualizations of sigma coordinate data in vertical section planes are best handled
with the 3-argument versions of the SHADE, FILL, CONTOUR and VECTOR
commands. See further information in Customizing Plots (, p. 155).

For visualization of sigma coordinate data in other planes or orientations use the

http://www.ferret.noaa.gov/Ferret/FAQ/data_management/sigma_coordinate_demo.html

techniques described in the next section.

Ch8 Sec7.2. Analysis techniques for sigma coordinate data

Analysis of sigma coordinate data, which requires shifting to depth or pressure
coordinates, is facilitated by the function ZAXREPLACE, which converts from
layer number to other vertical coordinate axes. See sigma_coordinate_demo.jnl for
an example. If the data set provides layer thickness rather than depth a depth
variable may be created using integration with @iin.

Ch8 Sec8. CURVILINEAR COORDINATE DATA

By "curvilinear coordinate data" we refer to data which is curvilinear in the XY
plane there. We presume that the X,Y coordinates (typically longitude, latitude) are
available through other dependent variables.

Ch8 Sec8.1. Visualization techniques for curvilinear
coordinate data

Visualizations of curvilinear coordinate data in the XY plane section planes are
best handled with the 3-argument versions of the SHADE, FILL, and Contour
commands. See further information in the chapter "Customizing Plots" (p. 155).

For visualization of curvilinear coordinate data in other planes or orientations use
the techniques described under "Analysis techniques for curvilinear coordinate
data."

Ch8 Sec8.2. Analysis techniques for curvilinear coordinate

data

Analysis of curvilinear coordinate data may be done in the curvilinear coordinate
system or in a rectilinear (including lat-long) coordinate system. If the analysis is
done in the curvilinear coordinate system, it is the responsibility of the user to
ensure that the proper geometric factor are applied when integrals and derivatives
are computed. Converting other fields to the curvilinear coordinate system is most
easily accomplished with the function SAMPLEXY.

To perform the analysis in a rectilinear coordinate system, the conversion of the
curvilinear data is most easily done with SAMPLEXY_CURV (under
development—6/00).

Ch8 Sec9. POLYGONAL DATA

By "polygonal data" we refer to a class of point data set where each point
represents a polygonal region rather than a single coordinate. An example of
polygonal data would be a value associated with each state in the United States.

Ch8 Sec9.1. Visualization techniques for polygonal data

Visualizations of polygonal data is best handled with the POLYGON command. If
the coordinates of the polygon vertices are available in 2-dimensional arrays,
XPOLY and YPOLY, in which the axes of the arrays are the polygon vertices and
the sequence of polygons the use of the POLYGON command is straightforward.
The POLYGON command can also handle sequences of polygons encoded in 1-
dimensional arrays with missing values separating each polygon.

Ch8 Sec9.2. Analysis techniques for polygonal data

Ferret version 5.0 does not have any tools specifically addressing the analysis of
polygonal data sets. The analysis of these data sets in Ferret requires the creation of
a gridded mask field corresponding to the polygonal regions (an external function
could be written that would create a gridded mask of arbitrary resolution from
polygonal coordinates.)

Once the mask is created, the standard gridded operators for averaging, integrating,
etc. can be used. For example, if variable cal_mask contains a gridded mask of the
state of California on latitude and longitude axes of 10 minute resolution then this
definition would compute the average of a gridded variable, var, over California:

yes? let cal_var = mask * var[g=mask]
yes? let cal_average = cal_var[x=@ave, y=@ave]

Chapter 9: COMPUTING ENVIRONMENT

Ch9 Sec1. SETTING UP TO RUN FERRET

This discussion assumes that Ferret is already istalled on your system. Installation
documentation is available separately from the Ferret Downloads web page

STEP 1

Execute interactively or add to your .login file the Unix C-shell command

% source /usr/local/ferret_paths

(Note: If this command doesn't work consult your system manager, who may have
placed ferret_paths in a different directory.)

The Ferret program requires access to several files and directories. These Unix
paths are stored in environment variables defined by the file "ferret_paths". Your
Unix account must be "made aware" of where the Ferret utilities are located. This
is done by adding to the definition of your environment variable PATH the
directory "$FER_DIR/bin". Unless your system manager has modified the typical
setup, this will occur automatically when you execute the above command.

STEP 2 (personal customization—optional)

Execute the "cp" command below:

% cp $FER_DIR/bin/my_ferret_paths_template \
 $HOME/my_ferret_paths

Then use a text editor to customize my_ferret_paths. Instructions are inside the
file.

Some of the Ferret environment variables identify files and directories that are
integral to the Ferret program, but others identify files that you may
maintain—your data files, GO scripts, and palette files, for example. (The

http://www.ferret.noaa.gov/Ferret/Downloads/ferret_downloads.html

environment variables that you may want to customize are discussed at the end of
this section.) To assist in customizing the Ferret environment variables the
template file in the "cp" command, above, has been provided. The file is self-
explanatory.

STEP 3

Execute the command below interactively or add it to your .login file.

% setenv DISPLAY node:0.0 e.g., % setenv DISPLAY anorak:0.0

This command sets the environment variable "DISPLAY" to point to the
workstation console or X-terminal where you want Ferret graphical output
displayed. In the example above, graphical output is directed to the screen of
workstation "anorak." The X display must be set for indexed color (a.k.a. pseudo-
color); a maximum of 65K colors.

Ch9 Sec2. FILES AND ENVIRONMENT VARIABLES
USED BY FERRET

.ferret—the Ferret initialization file. This optional file holds a list of Ferret
commands that will be executed immediately each time Ferret is started, permitting
Ferret to be tailored to individual needs and styles. The file must be located in your
$HOME (login) directory. A simple way to set up such a file is to enter Ferret,
enter the commands that you want executed each time you enter Ferret, exit Ferret
and rename the file "ferret.jnl" to ".ferret". Thereafter, all commands in ".ferret"
will be executed automatically whenever you enter Ferret.

The following environment variables are defined in the file ferret_paths:

FER_DATA—a list of directories to be searched to locate data files. Usually this
list includes ".", the current directory, and $FER_DSETS/data, a directory of
sample data sets provided with Ferret. Your system manager may have set this
variable to include other data areas as well. This is the list of directories searched
to locate NetCDF files.

FER_DESCR—a list of directories to be searched to locate descriptor files.
Descriptors are required by Ferret to access data sets that are in Ferret's "GT"
(grids at timesteps) or "TS" (time series) formats. Usually this list includes ".", the
current directory, and $FER_DSETS/descr, a directory of sample descriptors
provided with Ferret.

FER_GRIDS—a list of directories to be searched to locate grid definition files.
Data sets will usually have a grid definition file associated with them so that the
grids on which the data are defined may be known.

FER_DIR—top directory of the Ferret distribution on your system.

FER_DSETS—directory of sample data sets provided with the Ferret distribution.

FER_PALETTE—a list of directories to be searched to locate palette files. Usually
this list includes "." and $FER_DIR/ppl. Note that to assist you in choosing a good
palette for your plot, there is an FAQ, How can I find a good color palette for my
plot? at http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html

FER_GO—a list of directories to be searched to locate GO scripts. This list usually
includes ".", $FER_DIR/go, $FER_DIR/examples (demonstrations and tutorial),
and $FER_DIR/contrib (user contributions demonstrating various applications;
accuracy not guaranteed).

FER_EXTERNAL_FUNCTIONS—a list of directories to be searched to locate the
shared object files (.so files) for external functions. By default this list includes the
location of the example functions and the functions included with the Ferret
distribution.

Ch9 Sec3. MEMORY USE

Ferret indicates memory problems by issuing the error message "insufficient
memory." If memory is a problem running Ferret the following suggestions may
help:

http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html#_TN_Ref_viewaxes_b
http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html#_TN_Ref_viewaxes_b

1) Use the command SET MEMORY/SIZE=nnn to increase the memory cache
region available to Ferret.

2) Use the command SET MODE DESPERATE to determine the threshold size
of memory objects at which Ferret will break a large calculation into fragments. A
smaller argument value will induce stricter memory management but at a penalty
in performance.

3) Use CANCEL MEMORY whenever you are sure that the data referenced thus
far by Ferret will not be referenced again. This is particularly appropriate to batch
procedures that use Ferret. This eliminates any memory fragmentation that may be
left by previous commands.

4) Use CANCEL MODE SEGMENTS to minimize the memory usage by
graphics (on a few X-window systems this may prevent windows from being
restored after they are obscured).

5) When using DEFINE VARIABLE (alias LET) avoid embedding upper and
lower axis bounds within the variable definition. Ferret cannot split up large
calculations along axes when the limits are fixed in the definition. For example,

yes? LET V2=TEMP/10
yes? PLOT/K=1:10 V2

is preferable to

yes? LET V2=TEMP[K=1:10]/10
yes? PLOT V2

6) Try to group together calculations that are on smaller dimensioned objects.
For example, the expression VAR[i=1:100, j=1:100]*2*PI will make less efficient
use of cpu and memory than the expression VAR[i=1:100, j=1:100]*(2*PI). The
former multiplies each of the 10000 points of VAR by 2 and then performs a
second multiplication of the 10000 result points by PI. The latter computes the
scalar 2*PI and uses it only once in multiplying the 10000 points of VAR.

7) After complex plots using viewports, use CANCEL VIEWPORTS to clear
graphics memory.

8) If one has SET MODE STUPID:weak_cache, then make sure that the region is
fully defined (i.e., check SHOW REGION and check the region qualifiers of your
command). When the region along some axis is not specified Ferret defaults to the
full span of the data along that axis and is unable to optimize memory usage.

Ch9 Sec4. HARD COPY AND METAFILE
TRANSLATION

Ch9 Sec4.1. Hard copy

To obtain hard copy of plots produced by Ferret, follow these steps:

1) Within Ferret, enter the command

yes? SET MODE METAFILE

This tells Ferret to generate a graphic metafile (ANSI/ISO GKSM format) for each
plot created thereafter. To stop making the metafiles type

yes? CANCEL MODE METAFILE

2) Produce each plot as you would normally. Each new plot on your screen
generates an additional file named "metafile.plt.~n~" where "n" will be
incremented for each metafile. Overlay commands do not produce additional
metafiles. (The metafile name may be set by the SET MODE METAFILE
command.)

3) After exiting from Ferret use the command Fprint.

Note: If it is necessary to use Fprint without exiting Ferret, then issue the
command yes? PPL CLSPLT. This will close the current metafile. Note that
neither overlays nor additional viewports can be added to the plot after the metafile
has been closed.

Fprint is a script which translates metafiles generated by Ferret. It uses the program
"gksm2ps" and is intended to simplify sending plots to printers, to an output file
only, or to a workstation screen.

The Fprint script translates metafiles to Encapsulated PostScript or X-window
output. Your system manager should customize the script at your site to permit
your specification of the actual printers you have as output devices. Fprint uses
standard Unix command line syntax.

Fprint [-h] [-P printer || -o file_name || -X]

 [-p orient] [-# n] [-l line] [-R] metafile(s)

Options

Examples

% Fprint metafile.plt

renders "metafile.plt" on the default printer identified by the environment variable
PRINTER.

% Fprint -P myprinter -R metafile.plt*

renders all versions of "metafile.plt" on printer myprinter. Does not date stamp
them.

% Fprint -o my_plot.ps metafile.plt.~1~

writes plot "metafile.plt.~1~" to a postscript file named "my_plot.ps".

Ch9 Sec4.2. Metafile translation

The command "gksm2ps" allows you to control the translation of the device-
independent metafiles made by Ferret into device-specific output files. "gksm2ps"
was written by Larry Oolman at the University of Wyoming and modified at
NOAA/PMEL for use with Ferret. The "gksm2ps" command uses standard Unix
command line syntax. See usage hints provided by the -h option.

gksm2ps [-h] [-p landscape||portrait] [-l ps||cps] [-d
cps||phaser] \

 [-X || -o <ps_output_file>] [-R] [-a] [-g WxH+X+Y] file(s)

Options

-h prints help message.

-p orient The page orientation option determines whether the plot will be
placed on the page in landscape format, with the horizontal side
longer than the vertical, or portrait, with the vertical side
longer. The default is to orient the plot to best fit the page.

-l line This option permits specification of line styles in the hardcopy
plot. Valid options are "ps" (the default) and "cps". "ps" renders
lines as solid and dot-dashed and is suited for monochrome
printers. "cps" renders lines in color.

-d devtype The target device type of the translator. If the -d option is
omitted and output is to a file gksm2ps will use devtype "ps".

 Valid devtype values:

 Cps – color PostScript

phaser – Tektronix Phaser PX. The phaser is a PostScript
printer, but it uses transfer sheets that reduce the usable page
size.

-X Sends the output to your X-window for preview.

-o ofile The output will be directed to the file "ofile." Omit both this
and the device type option when directing output to your
workstation screen with -X. If neither -o nor -X is specified,
gksm2ps creates a postscript file in the current directory called
"gksm2ps_output.ps".

-a Makes the plot the size of the original plot as specified in
PPLUS inches (absolute size), rather than fitting the plot to the
page (the default behavior).

-g WxH+X+Y The -g option (-g WxH+X+Y) provides detailed control over
the size, position, and aspect ratio of the plot on the printed
page. The arguments W, H, X, and Y are given in units of
points (1/72 of an inch).

 Normally when using this option you will want to specify an
identical value for both W and H—the size (in points) you want
the longer dimension of the plot to be. Unequal values of W
and H will alter the aspect ratio of the plot relative to its
appearance on your workstation screen.

 The X and Y values are the offset of the lower left corner of the
plot from the lower left corner of the page. If you want your
plot's longer side to be 5 inches long, 3 inches right from the
corner, and 2 inches up, for example, specify

 > lpr my_plot.ps

-R Turns off the default behavior of the metafile translator to
append a date stamp to metafile names when they are sent to a
printer or a disk file. The default action is intended to
distinguish metafiles that have been printed out; this option
keeps the metafile names unmodified.

-C Output a CMYK postscript file; default is RGB. See the FAQ
on CMYK color, How can I get CMYK format for postscript
files?

If the user does not specify an output option (-o or -X) gksm2ps translates the
metafile and produces a PostScript file called gksm2ps_output.ps. After translation
by gksm2ps, metafiles are renamed with a date stamp unless -R was specified. To
get hard copy printed, the output PostScript file needs to be sent to the appropriate
printer.

Ch9 Sec5. OUTPUT FILE NAMING

Ferret uses a file naming scheme to differentiate successive graphic metafiles and
 journal files. The scheme is styled after the gnu (Free Software Foundation) emacs
editor. The scheme appends numbers to the end of the file name as in the following
examples:

Metafile.plt.~2~
metafile.plt.~12~
metafile.plt

http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/CMYK_postscript.html
http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/CMYK_postscript.html

The third example, "metafile.plt" with no suffix appended, is the most recent file.
When the next successive file is created, this file will have the suffix ".~nnn~"
appended to its name. "nnn" is the current highest file suffix number plus one.

Two Unix tools are provided to assist with managing multiple file suffix numbers:

Fpurge removes all but the current version of the named file (that is, all but the
most recent).

Example: % Fpurge ferret.jnl

Fsort sorts the versions of a file into increasing numerical order

Example: % Fprint 'Fsort metafile.plt*'

See the introductory chapter, section "Unix tools," p. 26, for further information.

Ch9 Sec6. INPUT FILE NAMING

There are several Ferret commands that use filenames. These include:

GO filename
SET DATA filename
LIST/FILE=filename (do not use relative versions (below) with
LIST)
USER/FILE=filename
SET MODE META filename
SET MODE JOURNAL filename
SET MODE PPLLIST filename

The filename specified can be just the filename itself, or it can include the path to
the file. For example:

 GO ferret.jnl or GO
"/home/disk1/jnl_files/far_side.jnl"

Note that if the path is specified as part of the filename, the entire name must be
enclosed in quotation marks.

Ch9 Sec6.1. Relative version numbers

Under some circumstances (see the GO command, p. 310) a special syntax called
"relative version numbers" will apply. If a filename has a version value of zero or
less its value is interpreted relative to the current highest version number.

For example, if the current directory contains the files

ferret.jnl ferret.jnl.~1~ ferret.jnl.~2~ ...
 ferret.jnl.~99~

then the filename ferret.jnl.~0~ refers to ferret.jnl and the filename
ferret.jnl.~-1~ refers to ferret.jnl.~99~.

The syntax for relative version numbers is quite flexible. For example, if the
desired file is ferret.jnl.~99~, both of the following are valid:

 yes? GO ferret.jnl.~-1~ or yes? GO ferret.jnl~-1

Chapter 10: CONVERTING TO NetCDF

Ch10 Sec1. OVERVIEW

The Network Common Data Format (NetCDF) is an interface to a library of data access routines for
storing and retrieving scientific data. NetCDF allows the creation of data sets that are self-describing
and network-transparent. NetCDF was created under contract with the Division of Atmospheric
Sciences of the National Scientific Foundation and is available from the Unidata Program Center in
Boulder, Colorado (on Internet: unidata.ucar.edu).

This chapter provides directions for creating NetCDF data files. In addition to the documentation
provided here, refer to the NetCDF User's Guide, published by Unidata Program Center, for further
guidance. A user who uses and creates NetCDF files within the Ferret environment needs no additional
software.

NetCDF is a very flexible standard. In most cases there are multiple styles or profiles that could be used
to encode data into NetCDF. To resolve the ambiguities inherent in this multiplicity communities of
users have banded together to develop profiles—documents that provide more detail on how data
should be encoded into NetCDF. Ferret adheres to the COARDS standard. The full standard is available
through the Ferret home page on the World Wide Web,

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html

Ch10 Sec2. SIMPLE CONVERSIONS USING FERRET

In straightforward conversion operations where ASCII or unformatted binary data files are already
readable by Ferret, the conversion to direct access, self-describing NetCDF formatted data can be
accomplished by Ferret itself. The following set of examples illustrates these procedures:

Example 1

Consider an ASCII file uv.data, with two variables, u and v, defined on a grid 360 by 180. The
following set of commands will properly read in u and v and convert them to a NetCDF formatted data
set:

yes? DEFINE AXIS/x=1:360:1/units=degrees xaxis
yes? DEFINE AXIS/y=1:180:1/units=degrees yaxis
yes? DEFINE GRID/x=xaxis/y=yaxis uv_grid
yes? FILE/GRID=uv_grid/BAD=-999/VAR="u,v" uv.data
yes? SET VARIABLE/TITLE="zonal velocity" u
yes? SAVE/FILE=uv.cdf u,v

See command DEFINE AXIS in the Commands Reference (p. 292). See the chapter "Grids and

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html

Regions" (p. 119) for setting up formatted latitude, longitude and time axes.

Example 2

Consider now two separate ASCII files, u.data and v.data, defined on a grid 360 by 180. The following
set of commands will properly read in u and v and convert them to a single NetCDF formatted data set:

yes? DEF AXIS/x=1:360:1/units=degrees xaxis
yes? DEF AXIS/y=1:180:1/units=degrees yaxis
yes? DEF GRID/x=xaxis/y=yaxis uv_grid
yes? FILE/GRID=uv_grid/BAD=-999/VAR=u u.data
yes? FILE/GRID=uv_grid/BAD=-999/VAR=v v.data
yes? SAVE/FILE=uv2.cdf u[D=1]
yes? SAVE/APPEND/FILE=uv2.cdf v[D=2]

Example 3—multiple time steps

Consider 12 ASCII files, uv.data1 to uv.data12, each defined on the same grid as above but each
representing a successive time step. The following set of commands illustrates how to save these data
into a single NetCDF data set (time series):

yes? DEF AXIS/x=1:360:1 xaxis
yes? DEF AXIS/y=1:180:1 yaxis
yes? DEF AXIS/t=1:1:1 taxis1
yes? DEF GRID/x=xaxis/y=yaxis/t=taxis1 uv_grid1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data1
yes? SAVE/FILE=uv1_12t.cdf u,v
yes? CANCEL DATA uv.data1
yes? DEF AXIS/t=2:2:1 taxis1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/APPEND/FILE=uv1_12t.cdf u,v
. . .

and so on, redefining the time axis to be 3:3:1, 4:4:1, ... each time a new file is set.

Example 4—multiple slabs

The procedure used in example 3, above, is possible because NetCDF files can be extended along the
time axis. In order to append multiple levels (Z axis), the NetCDF file must first be created including all
of its vertical levels (the levels initially are filled with a missing data flag).

Consider 5 ASCII files, uv.data1 to uv.data5, each defined on the same grid as above but each
representing a successive vertical level. The following set of commands illustrates how to save these
data into a single NetCDF data set:

yes? DEF AXIS/x=1:360:1 xaxis
yes? DEF AXIS/y=1:180:1 yaxis
yes? DEF AXIS/Z=0:100:25/DEPTH zaxis
yes? DEF GRID/X=xaxis/Y=yaxis/Z=zaxis uv_grid

yes? DEF AXIS/Z=0:0:1 zaxis1
yes? DEF GRID/LIKE=uv_grid/Z=zaxis1 uv_grid1

yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data1
yes? LET/TITLE="My U data" u1 = u[G=uv_grid]
yes? LET/TITLE="My V data" v1 = v[G=uv_grid]
yes? SAVE/FILE=uv1_5z.cdf/KLIMITS=1:5/K=1 u1, v1

yes? CANCEL DATA uv.data1
yes? DEF AXIS/Z=25:25:1 zaxis1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/FILE=uv1_5z.cdf/K=2/APPEND u1,v1
. . .

yes? CANCEL DATA/ALL ! Cancel definitions before using new file

yes? CANCEL VAR/ALL

yes? USE uv1_5z.cdf

The NetCDF utilities "ncdump" and "ncgen" can also be combined with a text editor to make final
refinements to the NetCDF files created by SAVE. (These utilities are not provided with the Ferret
distribution; they can be obtained from unidata.ucar.edu.) Here is a simple example that removes all
"history" attributes from a NetCDF file using pipes and the Unix "grep" utility:

% ncdump old_file.cdf | grep -v history | ncgen -o new_file.cdf

Ch10 Sec3. WRITING A CONVERSION PROGRAM

There are three steps required to convert data to NetCDF if your data is not already readable by Ferret:

1. Create a CDL (the ASCII NetCDF Description Language) file that describes the axes, grids, and
variables of the desired output data set. Note: Ferret itself often provides the simplest way to create the
CDL file (see the following section).

2. Convert this CDL file into a NetCDF file with the ncgen utility.

3. Create a program that will read your particular data and insert them into the NetCDF file. The
ncgen utility will create most of the FORTRAN or C code needed for this task.

The file converting_to_netcdf.f which is located in the Ferret documentation directory
($FER_DIR/doc) contains a complete description and example of these three steps. The remainder of
this section provides further details.

Ch10 Sec3.1. Creating a CDL file with Ferret

Suppose that we wish to create a CDL file to describe a data set entitled "My Global Data" which
contains variables u and v in cm/sec on a 5×5 degree global lat/long grid. The following commands
would achieve the goal with Ferret doing the majority of the work:

• From Ferret issue the commands

DEFINE AXIS/X=2.5E:2.5W:5/UNITS=degrees xlong
DEFINE AXIS/Y=87.5S:87.5N:5/UNITS=degrees ylat
DEFINE GRID/X=xlong/Y=ylat my_grid
LET shape_2d = x[G=my_grid]+y[G=my_grid]
LET U = 1/0*SHAPE_2D
LET V = 1/0*SHAPE_2D
SET VARIABLE/TITLE="Zonal Velocity"/UNITS="cm/sec" u
SET VARIABLE/TITLE="Meridional Velocity"/UNITS="cm/sec" v
SAVE/FILE=my_file.cdf/TITLE="My Global Data" u,v
QUIT

• From Unix issue the command

ncdump -c my_file.cdf > my_file.cdl

The resulting file my_file.cdl is ready to use or to make final modifications to with an editor.

Ch10 Sec3.2. The CDL file

A CDL file consists of three sections: Dimensions, Variables, and Data. All of the following text in
small Courier font constitutes a real CDL file; it can be copied verbatim and used to generate a
NetCDF file. The full text of this file is included with the Ferret distribution as
$FER_DIR/doc/converting_to_netcdf.basic.

netcdf converting_to_netcdf.basic {

Ch10 Sec3.2.1. Dimensions

In this section, the sizes of the grid dimensions are specified. One of these dimensions can be of
"unlimited" size (i.e., it can grow).

Dimensions:

 lon = 160 ; // longitude

 lat = 100 ; // latitude
 depth = 27 ; // depth
 time = unlimited ;

These are essentially parameter statements that assign certain numbers that will be used in the Variables
section to define axes and variable dimensions. The "//" is the CDL comment syntax.

The dimension variables are available to you in Ferret commands as pseudo-variables. For example, to
use the "depth" dimension variable from the above example, you can say:

yes? let valz = z[gz=depth]
yes? let offset = valz + a

See the next section (p. 234) about axes for more on dimension variables.

Ch10 Sec3.2.2. Variables

Variables, variable attributes, axes, axis attributes, and global attributes are specified.

variables:

 float temp(time, depth, lat, lon) ;
 temp: long_name = "TEMPERATURE" ;
 temp: units = "deg. C" ;
 temp: _FillValue = 1E34 ;
 float salt(time, depth, lat, lon) ;
 salt: long_name = "(SALINITY(ppt) - 35) /1000" ;
 salt: units = "frac. by wt. less .035" ;
 salt: _FillValue = -999. ;

The declaration "float" indicates that the variable is to be stored as single precision, floating point (32-
bit IEEE representation). The declarations "long" (32-bit integer), "short" (16-bit integer), "byte" (8-bit
integer) and "double" (64-bit IEEE floating point) are also supported by Ferret. Note that although these
data types may result in smaller files, they will not affect Ferret's memory usage, as all variables are
converted to "float" internally as they are read by Ferret.

Variable names in NetCDF files should follow the same guidelines as Ferret variable names. .:

● case insensitive (avoid names that are identical apart from case)
● 1 to 24 characters (letters, digits, $ and _) beginning with a letter
● avoid reserved names (I, J, K, L, X, Y, Z, T, XBOX, ...)

See p. 56 for how to handle invalid variable names that are already in a NetCDF file.

The _FillValue attribute informs Ferret that any data value matching this value is a missing (invalid)

data point. For example, an ocean data set may label land locations with a value such as 1E34. By
identifying 1E34 as a fill value, Ferret knows to ignore points matching this value. The attribute
"missing_value" is similar to "_FillValue" when reading data; but "_FillValue" also specifies a value to
be inserted into unspecified regions during file creation. You may specify two distinct flags for invalid
data in the same variable by using "_FillValue" and "missing_value" together.

Ferret variables may have from 1 to 4 dimensions. If any of the axes have the special interpretations of:
1) latitude, 2) longitude, 3) depth, or 4) time (date), then the relative order of those axes in the CDL
variable declaration must be T, then Z, then Y, and then X, as above. Any of these special axes can be
omitted and other axes (for example, an axis called "distance") may be inserted between them.

axis definitions:

 double lon(lon) ;
 lon: units = "degrees";
 double lat(lat) ;
 lat: units = "degrees";
 double depth(depth) ;
 depth: units = "meters";
 double time(time) ;
 time: units = "seconds since 1972-01-01";

Axes, also known as coordinate variables, are distinguished from other 1-dimensional NetCDF
variables by their variable names being identical to their dimension names. Special axis interpretations
are inferred by Ferret through a variety of "clues."

The direction of the axis may be specified by the attribute AXIS or CARTESIAN_AXIS. Files written
by Ferret (as of version 5.5) include the AXIS attribute for coordinate variables.

lon: axis="X";

Date/time axes are inferred by units of "years," "days," "hours," "minutes," or "seconds," or by axis
names "time," "date," or "t" (case-insensitive). Calendar date formatting requires the "units" attribute to
be formatted with both a valid time unit and "since yyyy-mm-dd".

Vertical axes are identified by axis names containing the strings "depth", "elev", or "z", or by units of
"millibars." Depth axes are positive downward by default. The attribute positive= "down" can also be
used to create a downward-pointing Z axis. The positive= attribute may be used on any axis, with the
values positive= "down" or positive="up", however positive="down" is applied only to Z axes and is
ignored otherwise.

Latitude axes are inferred by units of "degrees" or "latitude" with axis names containing the strings
"lat" or "y". Longitude axes are inferred by units of "degrees" or "longitude" with axis names
containing the strings "lon" or "x".

Axis direction is determined by Ferret as in this order:

1) AXIS attribute

2) CARTESIAN_AXIS attribute

3) positive="down", indicating a z axis

4) Axis units

5) Axis name

Once the direction is determined, other conflicting information is ignored. Thus if an axis has the
attribute AXIS="Y"

Axes are either netCDF coordinate variables or are synthesized (as simple indices 1, 2, 3, ...) if
coordinate definitions are missing for a variable. The axes of a variable are available as "pseudo-
variables" using the syntax X[g=var], where "var" is the name of the netCDF variable, and similarly for
the Y,Z, and T axes. When the data set is cancelled the associated axes are cancelled, too. The
exception is that axes will be retained if they are in use in a DEFINE GRID definition -- and they will
be erased from memory at the time all grids using them are cancelled.

Some files contain axis definitions (coordinate variables) without associated variables. Like all axes
they are visible with the SHOW AXIS command. To obtain the values of those coordinate variables as
Ferret pseudo-variables use the syntax X[gx=axname], where axname is the name of the coordinate
variable (also the NetCDF dimension name) and likewise for Y,Z, and T axes. Note that when the data
set is cancelled, axis definitions of this variety are retained -- unlike axes that are used in variables.

Global attributes, or attributes that apply to the entire data set, can be specified as well.

global attributes:
 :title = "NetCDF Example";
 :message = "This message will be displayed when the CDF file is
 opened by Ferret";
 :history = "Documentation on the origins and evolution of this data
 set or variable";

Ch10 Sec3.2.3. Data

In this section, values are assigned to grid coordinates and to the variables of the file. Below are 100
latitude coordinates entered (in degrees) into the variable axis "lat", 160 longitude coordinates in "lon",
and 27 depth coordinates (in meters) in "depth". Longitude coordinates must be specified with 0 at
Greenwich, continuous across the dateline, with positive eastward (modulo 360).

Data:

lat=
-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.151357650,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.987424850,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.169393539,
-9.8333206177,-9.4999876022,-9.1666536331,-8.8333196640,-8.4999856949,
-8.1666526794,-7.8333187103,-7.4999847412,-7.1666512489,-6.8333182335,
-6.4999852180,-6.1666517258,-5.8333182335,-5.4999852180,-5.1666517258,
-4.8333187103,-4.4999852180,-4.1666517258,-3.8333187103,-3.4999852180,
-3.1666517258,-2.8333184719,-2.4999852180,-2.1666519642,-1.8333185911,
-1.4999852180,-1.1666518450,-0.8333183527,-0.4999849498,-0.1666515470,
0.1666818559,0.5000152588,0.8333486915,1.1666821241,1.5000154972,
1.8333489895,2.1666824818,2.5000159740,2.8333494663,3.1666829586,
3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.8333497047,
5.1666831970,5.5000162125,5.8333497047,6.1666827202,6.5000162125,
6.8333497047,7.1666827202,7.5000166893,7.8333501816,8.1666841507,
8.5000181198,8.8333511353,9.1666851044,9.5000190735,9.8333530426,
10.1679363251,10.5137376785,10.8892869949,11.3138961792,11.8060989380,
12.3833675385,13.0618314743,13.8560228348,14.7786512375,15.8403968811,
17.0497493744,18.4128704071,19.9334945679,21.6128730774,23.4497566223,
25.4404067993,27.5786647797,29.8560409546,32.2618522644,34.7833900452,
37.4061241150,40.1139259338,42.8893203735,45.7137718201,48.5679702759;
lon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.5,142.5,
143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.5,154.5,155.5,
156.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.5,166.5,167.5,168.5,
169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.5,178.5,179.5,180.5,181.5,
182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.5,190.5,191.5,192.5,193.5,194.5,
195.5,196.5,197.5,198.5,199.5,200.5,201.5,202.5,203.5,204.5,205.5,206.5,207.5,
208.5,209.5,210.5,211.5,212.5,213.5,214.5,215.5,216.5,217.5,218.5,219.5,220.5,
221.5,222.5,223.5,224.5,225.5,226.5,227.5,228.5,229.5,230.5,231.5,232.5,233.5,
234.5,235.5,236.5,237.5,238.5,239.5,240.5,241.5,242.5,243.5,244.5,245.5,246.5,
247.5,248.5,249.5,250.5,251.5,252.5,253.5,254.5,255.5,256.5,257.5,258.5,259.5,
260.5,261.5,262.5,263.5,264.5,265.5,266.5,267.5,268.5,269.5,270.5,271.5,272.5,
273.5,274.5,275.5,276.5,277.5,278.5,279.5,280.5,281.5,282.5,283.5,284.5,285.5,
286.5,287.5,288.5,289.5;
depth=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0,177.5,
205.0,240.0,288.5,362.5,483.5,680.0,979.5,1395.5,1916.0,2524.0,3174.0,3824.0; }

To use this CDL file type:

% ncgen -o my_data.cdf converting_to_netcdf.basic

This will create a file called "my_data.cdf" to which data can be directed (see next section).

Another NetCDF command, "ncdump", can be used to generate a CDL file from an existing NetCDF
file. The command

% ncdump -h my_data.cdf

will list the CDL representation of a preexisting my_data.cdf without the Data section, while

% ncdump my_data.cdf

will list the CDL file with the Data section. The command

% ncdump -c my_data.cdf

will create a CDL file in which only coordinate variables are included in the Data section. The listed
output can be redirected to a file as in the command

% ncdump -c my_data.cdf > my_data.cdl

Ch10 Sec3.3. Standardized NetCDF attributes

A document detailing the COARDS NetCDF conventions to which the Ferret program adheres are
available on line through the Ferret home page on the World Wide Web, at
 http://www.ferret.noaa.gov/noaa_coop/ coop_cdf_profile.html and at

 http://www.unidata.ucar.edu/packages/netcdf/conventions.html

The following are the attributes most commonly used with Ferret. They are described in greater detail
in the reference document named above.

Global Attributes
:title = "my data set title"
:history = "general background information"

Data Variable Attributes
long_name = "title of my variable"
units = "units for this variable"
_FillValue = missing value flag
missing_value = alternative missing value flag
scale_factor = (optional) the data are to be multiplied by this factor
add_offset = (optional) this number is to be added to the data

Special Coordinate Variable Attributes
time_axis:units = "seconds since 1992-10-8 15:15:42.5 -6:00"; // example
y_axis:units = "degrees_north"
x_axis:units = "degrees_east"
z_axis:positive = "down"; // to indicate preferred plotting orientation
my_axis:point_spacing = "even"; // improved performance if present

Note that when using Ferret to output into NetCDF files that Ferret did not itself create, the results may
not be entirely as expected. Case-sensitivity of names is one aspect of this. Since Ferret is (by default)

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html
http://www.unidata.ucar.edu/packages/netcdf/conventions.html

case insensitive and netCDF files are case-sensitive writing into a "foreign" file may result in
 duplicated entities in the file which differ only in case.

Ch10 Sec3.4. Directing data to a CDF file

The following is an example program which can be used on-line to convert existing data sets into
NetCDF files. It also should provide guidance on sending data generated by numerical models directly
to NetCDF files. This program assumes you have created the NetCDF file as described in the previous
section. It is included in the distribution as $FER_DIR/doc/converting_to_netcdf.f.

 program converting_to_netcdf

c written by Dan Trueman
c updated 4/94 *sh*

c This program provides a model for converting a data set to NetCDF.
c The basic strategy used in this program is to open an existing NetCDF
c file, query the file for the ID's of the variables it contains, and
c then write the data to those variables.

c The output NetCDF file must be created **before** this program is run.
c The simplest way to do this is to cd to your scratch directory and
c % cp $FER_DIR/doc/converting_to_netcdf.basic converting_to_netcdf.cdl
c and then edit converting_to_netcdf.cdl (an ASCII file) to describe YOUR
c data set. If your data set requires unequally spaced axes, climatological c
time axes, staggered grids, etc. then converting_to_netcdf.supplement may c be a
better starting point then the "basic" file used above.
c After you edit converting_to_netcdf.cdl then create the NetCDF file with
c the command
c % ncgen -o converting_to_netcdf.cdf converting_to_netcdf.cdl

c Now we will read in **your** data (gridded oceanic temperature and
c salt in this example) and write it out into the NetCDF file
c converting_to_netcdf.cdf. Note that the axis coordinates can be written
c out exactly the same methodology - including time step values (as below).

c An alternative to modifying this program is to use the command:

c ncgen -f converting_to_netcdf.cdl

c This will create a large source code to which select lines can
c be added to write out your data.

c To compile and link converting_to_netcdf.f, use:

c f77 -o converting_to_netcdf converting_to_netcdf.f -lnetcdf

c include file necessary for NetCDF

 include 'netcdf.inc' ! may be found in $FER_DIR/fmt/cmn

c parameters relevant to the data being read in
c THESE NORMALLY MATCH THE DIMENSIONS IN THE CDL FILE
c (except nt which may be "unlimited")

 integer imt, jmt, km, nt, lnew, inlun
 parameter (imt=160, jmt=100, km=27, nt=5)

c imt is longitude, jmt latitude, km depth, and nt number of time steps

c variable declaration

 real temp(imt,jmt,km),salt(imt,jmt,km),time_step

 integer cdfid, rcode
c ** cdfid = id number for the NetCDF file my_data.cdf
c ** rcode = error id number

 integer tid, sid, timeaxid
c ** tid = variable id number for temperature
c ** sid = variable id number for salt
c ** timeaxid = variable id for the time axis
 integer itime
c ** itime = index for do loop

c dimension corner and step for defining size of gridded data

 integer corner(4)
 integer step(4)

c corner and step are used to define the size of the gridded data
c to be written out. Since temp and salt are four dimensional arrays,
c corner and step must be four dimensions as well. In each output
c to my_data.cdf within the do loop, the entire array of data (160 long.
c pts, 100 lat. pts., 27 depth pts.) will be written for one time step.
c Corner tells NetCDF where to start, and step indicates how many steps
c in each dimension to take.

 data corner/1, 1, 1, -1/ ! -1 is arbitrary; the time value
 ! of
corner will be initialized
 ! within the do loop.

 data step/imt, jmt, km, 1/ ! NOT /1, km, jmt, imt/

c ***NOTE*** Since Fortran and C access data differently, the order of
c the variables in the Fortran code must be opposite that in the CDL
c file. In Fortran, the first index varies fastest while in C, the
c last index varies fastest.
**
c initialize cdfid by using ncopn

 cdfid = ncopn('converting_to_netcdf.cdf', ncwrite, rcode)
 if (rcode.ne.ncnoerr) stop 'error with ncopn'

**
c get variable id's by using ncvid
c THE VARIABLE NAMES MUST MATCH THE CDL FILE (case sensitive)

 tid = ncvid(cdfid, 'temp', rcode)
 if (rcode.ne.ncnoerr) stop 'error with tid'
 sid = ncvid(cdfid, 'salt', rcode)
 if (rcode.ne.ncnoerr) stop 'error with sid'
 timeaxid = ncvid(cdfid, 'time', rcode)
 if (rcode.ne.ncnoerr) stop 'error with timeaxid'
**
c this is a good place to open your input data file
 ! OPEN (FILE=my_data.dat,STATUS='OLD')
**
c begin do loop. Each step will read in one time step of data
c and then write it out to my_data.cdf.

 do 10 itime = 1, nt

 corner(4) = itime ! initialize time step in corner
 time_step = float(itime) ! or you may read this from your file

* insert your data reading routine here
! CALL READ_MY_DATA(temp,salt) ! you write this

 write (6,*) 'writing time step: ',itime, time_step ! diagnostic output

 call ncvpt(cdfid,tid,corner,step,temp(1,1,1),rcode) ! write data to
 if (rcode.ne.ncnoerr) stop 'error with t-put'
 call ncvpt(cdfid,sid,corner,step,salt(1,1,1),rcode) ! my_data.cdf with
 if (rcode.ne.ncnoerr) stop 'error with s-put'
 call ncvpt1(cdfid,timeaxid,itime,time_step,rcode) ! ncvpt
 if (rcode.ne.ncnoerr) stop 'error with timax-put'

c ncvpt1 writes a single data point to the specified location within
c timeaxid. The itime argument in ncvpt1 specifies the location within
c time to write.
c float(itime) is used (rather than simply itime) so the type matches the
c type of time declared in the CDL file.

10 continue
**
c close my_data.cdf using ncclos
 call ncclos(cdfid, rcode)
 if (rcode.ne.ncnoerr) stop 'error with ncclos'
**
 stop
 end

Ch10 Sec3.5. Advanced NetCDF procedures

This section describes:

1. Setting up a CDL file capable of handling data on staggered grids.

2. Defining coordinate systems such that the data in the NetCDF file may be regarded as hyperslabs
of larger coordinate spaces.

3. Defining boundaries between unevenly spaced axis coordinates (used in numerical integrations).

4. Setting up "modulo" axes such as climatological time and longitude.

5. Converting dates into numerical data appropriate for a NetCDF time axis.

The final section of this chapter contains the text of the CDL file for the example we use throughout
this section.

In this sample data set, we will consider wind, salt, and velocity calculated using a staggered-grid, finite-
difference technique. The wind data is limited to the surface layer of the ocean (i.e., normal to the depth
axis). We will also consider the salt data to be limited to a narrow slab from 139E to 90W (I=10 to
140), 32.5N to 34.9N (J=80 to 82), and for all depth and time values.

Ch10 Sec3.5.1. Staggered grid

Ferret permits each variable of a NetCDF file to be defined on distinct axes and grids. Staggered grids
are a straightforward application of this principle. Dimensions for each grid axis must be defined, the
axes themselves must be defined (in Variables), and the coordinate values for each axis must be
initialized (in Data). In the case of the example we use throughout this and the next section, there are
two grids—a wind grid, and a velocity grid; slon, slat and sdepth are defined for the wind grid, and
ulon, ulat, and wdepth for the velocity grid. The variables are then given dimensions to place them in
their proper grids (i.e., wind(time, sdepth, slat, slon)).

Ch10 Sec3.5.2. Hyperslabs

There are a number of steps required to set up a NetCDF data set that represents a hyperslab of data
from a larger grid definition (a parent grid).

1. Define a dimension named "grid_definition." This dimension should be set equal to 1.

2. Define parent grids in Variables with the argument "grid_definition".

char wind_grid(grid_definition) ;
char salt_grid(grid_definition) ;

3. Define the 4 axes of the parent grids using the "axes" attribute.

wind_grid: axes = "slon slat normal time" ;
salt_grid: axes = "slon slat sdepth time" ;

The arguments are always a list of four axis names. Note that the order of arguments is opposite that in
the variable declaration. The argument "normal" indicates that wind_grid is normal to the depth axis.

4. Define the variables that are hyperslabs of these grids with the proper dimensions.

float wind(time, slat, slon) ;
float salt(time, sdepth, slat80_82, slon10_140) ;

where the dimension slat80_82 = 3 and slon10_140 = 131. Optionally, these axes may be defined
themselves with the attribute "child_axis".

float slat80_82(slat80_82) ;
slat80_82: child_axis = " " ;

These "child axes" need not be initialized in data, nor do edges need to be defined for them; Ferret will
retrieve this information from the parent axis definitions. However, it is recommended that they be
initialized to accommodate other software that may not recognize parent grids.

 5. Use the "parent_grid" variable attribute to point to the parent grid.

wind: parent_grid = "wind_grid"
salt: parent_grid = "salt_grid"

6. Also, as a variable attribute, define the index range of interest within the parent grid.

wind: slab_min_index = 1s, 1s, 1s, 0s ;
wind: slab_max_index = 160s, 100s, 1s, 0s ;
salt: slab_min_index = 10s, 80s, 1s, 0s ;
salt: slab_max_index = 140s, 82s, 27s, 0s ;

The "s" after each integer indicates a "short" 16-bit integer rather than the default "long" 32-bit integer.
If an axis dimension is designated as "unlimited" then the index bounds for this axis must be designated
as "0s".

These attributes will effectively locate the wind and salt data within the parent grid.

Ch10 Sec3.5.3. Unevenly spaced coordinates

For coordinate axes with uneven spacing, the boundaries between each coordinate can be indicated by
pointing to an additional axis that contains the locations of the boundaries. The dimension of this
"edge" axis is necessarily one larger than the coordinate axis concerned. If edges are not explicitly
defined for an unevenly spaced axis, the midpoint between coordinates is assumed by default.

1. Define a dimension one larger than the coordinate axis. For the sdepth axis, with 27 coordinates,
define:

 sdepth_edges = 28 ;

2. Define an axis called sdepth_edges.

3. Initialize this axis with the desired boundaries (in Data).

4. As an attribute of the main axis, point to edges list:

 sdepth: edges = "sdepth_edges" ;

Ch10 Sec3.5.4. Evenly spaced coordinates (long axes)

If the coordinate axes are evenly spaced, the attribute "point spacing" should be used:

slat: point_spacing = "even" ;

When used, this attribute will improve memory use efficiency in Ferret. This is especially important for
very large axes—10,000 points or more.

Ch10 Sec3.5.5. "Modulo" axes

The "modulo" axis attribute indicates that the axis wraps around, the first point immediately following
the last. The most common uses of modulo axes are:

1. longitude axes for globe-encircling data. If the modulo length is different from 360 degrees, specify
the value.

2. time axes for climatological data

time: modulo = " " ;

xavr: modulo = "100" ;

If the climatological data occurs in the years 0000 or 0001 then the year will be omitted from Ferret's
output format.

NetCDF time axes encoded as year 0000 or 0001 are automatically flagged as modulo axes.

As of Ferret version5.5, longitude axes and climatological time axes are always detected as modulo, or
as sub-span modulo when appropriate, unless Ferret is specifically directed that the axis is NOT
modulo. See the sections on modulo axes and subspan modulo axesfor more information (p. 140 ff)

Ch10 Sec3.5.6. Reversed-coordinate axes

NetCDF axes may contain monotonically decreasing axis coordinates instead of monotonically
increasing coordinates. Ferret will hide this aspect of the file data ordering.

Ch10 Sec3.5.7. Converting time word data to numerical data

To set up a time axis for data represented as dates (e.g., "1972 January 15 at 12:15") it is necessary to
determine a numerical representation for each of the dates. Ferret can assist with this process, as the
following example shows.

Suppose the data are 6-hourly observations from 1-JAN-1991 at 12:00 to 15-MAR-1991 at 18:00.
These commands will assist in creating the necessary time axis for a NetCDF file:

yes? DEFINE AXIS/T="1-JAN-1991:12:00":"15-MAR-1991:18:00":6/UNITS=hours\
 my_time
yes? DEFINE GRID/T=my_time tgrid
yes? SET REGION/T="1-JAN-1991:12:00":"15-MAR-1991:18:00"
yes? LIST T[g=tgrid] !to see the time values
yes? SAVE/FILE=my_time.cdf T[g=tgrid]

The file my_time.cdf now contains a model of exactly the desired time axis. Use the Unix command

% ncdump my_time.cdf > my_time.cdl

to obtain the time axis definition as text that can be inserted into your CDL file.

Ch10 Sec3.6. Example CDL file

The following is an example CDL file utilizing many of the features described in the preceding section.

netcdf converting_to_netcdf_supplement {
// CONVERTING DATA TO THE "NETWORK COMMON DATA FORM" (NetCDF):
// A SUPPLEMENT
//
// NOAA PMEL Thermal Modeling and Analysis Project (TMAP)
// Dan Trueman, Steve Hankin
// last revised: 1 Dec 1993: slat80_82 and slon10_140 coordinates included
//
// I. INTRODUCTION
//
// This supplement to "Converting Data to the Network Common Data Form:
// an Introduction" describes:
//
// 1. How to set up a cdl file capable of handling data
// on staggered grids.
// 2. How to define coordinate systems such that the data
// in the NetCDF file may be regarded as hyperslabs of
// larger coordinate spaces.
// 3. How to define variables of 1, 2, or 3 dimensions.
// 4. How to define boundaries between unevenly spaced axis
// coordinates (used in numerical integrations).
// 5. How to set up climatological "modulo" time axes.
// 6. How to convert time word data into numerical data
// appropriate for NetCDF.
//
// In this sample data set, we will consider wind, salt, and
// velocity calculated using a staggered-grid, finite-difference
// technique. The wind data is naturally limited to the surface
// layer of the ocean (i.e. normal to the depth axis). We will
// also consider the salt data to be limited to a narrow slab from
// 139E to 90W (I=10 to 140), 32.5N to 34.9N (J=80 to 82), and for
// all depth and time values.
//
// II. STAGGERED GRIDS
//
// Dealing with staggered grids is fairly straightforward. Dimensions
// for each grid axis must be defined, the axes themselves must be
// defined (in Variables), and the coordinate values for each axis must
// be initialized (in Data). In this case, there are two grids, a
// wind grid, and a velocity grid, so tlon, tlat and tdepth are
// defined for the wind grid, and ulon, ulat, and udepth for the velocity
// grid. The variables are then given arguments to place them in their
// proper grids (i.e. wind(time, sdepth, slat, slon)).
//

// III. HYPERSLABS
//
// There are a number of steps required to set up a NetCDF data set that
// represents a hyperslab of data from a larger grid definition.
//
// 1. Define a dimension named "grid_definition". This dimension
// should be set equal to 1.
// 2. Define parent grids in Variables with the argument
// "grid_definition".
//
// char wind_grid(grid_definition) ;
// char salt_grid(grid_definition) ;
//
// 3. Define the 4 axes of the parent grids using the "axes" attribute.
//
// wind_grid: axes = "slon slat normal time" ;
// salt_grid: axes = "slon slat sdepth time" ;
//
// Note that the order of arguments is opposite that in the
// variable declaration. The argument "normal" indicates that
// wind_grid is normal to the depth axis.
//
// 4. Define the variables which are hyperslabs of these grids with
// the proper dimensions.
//
// float wind(time, slat, slon) ;
// float salt(time, sdepth, slat80_82, slon10_140) ;
//
// where slat80_82 = 3 and slon10_140 = 131. The axis names are
/// arbitrary - chosen for readability. These axes (child axes)
// must be defined with the attribute "child_axis" as follows:
//
// float slat80_82(slat80_82) ;
// slat80_82: child_axis = " " ;
//
// These "child axes" need not be initialized in Data, nor do their

// edges need be defined; Ferret retrieves this information from
// the parent axes.
//
// 5. Use the "parent_grid" variable attribute to point to the
// parent grid.
//
// wind: parent_grid = "wind_grid"
//
// 6. Also as a variable attribute, define the index range of interest
// within the parent grid.
//
// wind: slab_min_index = 1s, 1s, 1s, 0s ;
// wind: slab_max_index = 160s, 100s, 1s, 0s ;
// salt: slab_min_index = 10s, 80s, 1s, 0s ;
// salt: slab_max_index = 140s, 82s, 27s, 0s ;
//
// The "s" after each integer indicates a "short" 16-bit integer
// rather than the default "long" 32-bit integer. If an axis

// dimension is designated as "unlimited" then the index bounds
// for this axis must be designated as "0s".
//
// These commands will effectively locate the wind and salt data within
// the full grid.
//
// IV. VARIABLES OF 1, 2, or 3 DIMENSIONS
//
// One, two, or three dimensional variables may be set up in one of
// two ways - either using the parent_grid and child_axis attributes
// as illustrated in the 3-dimensional variable "wind" from the hyperslab
// example, above, or by selecting axis names and units that provide
// Ferret with adequate hints to map this variable onto 4-dimensional
// space and time. The following hints are recognized by Ferret:
//
// Units of days, hours, minutes, etc. or an axis name of "TIME", "DATE"
// implies a time axis.
// Units of "degrees xxxx" where "xxxx" contains "lat" or "lon" implies
// a latitude or longitude axis, respectively.
// Units of "degrees" together with an axis name containing "LAT" or
// "Y" implies a latitude axis else longitude is assumed.
// Units of millibars, "layer" or "level" or an axis name containing
// "Z" or "ELEV" implies a vertical axis.
//
// V. UNEVENLY SPACED COORDINATE BOUNDARIES
//
// For coordinate axes with uneven spacing, the boundaries between each
// coordinate can be indicated by pointing to an additional axis that
// contains the locations of the boundaries. The dimension of this "edge"
// axis will necessarily be one larger than the coordinate axis concerned.
// If edges are not defined for an unevenly spaced axis, the midpoint
// between coordinates will be assumed by default.
//
// 1. Define a dimension one larger than the coordinate axis. For
// the sdepth axis, with 27 coordinates, define:
//
// sdepth_edges = 28 ;
//
// 2. Define an axis called sdepth_edges.
// 3. Initialize this axis appropriately (in Data).
// 4. As a sdepth axis attribute, point to sdepth_edges:
//
// sdepth: edges = "sdepth_edges" ;
//
// If the coordinate axes are evenly spaced, the attribute "point spacing"
// should be used:
//
// slat: point_spacing = "even" ;
//
// When used, this attribute will improve memory use efficiency in Ferret.
//
// VI. CLIMATOLOGICAL "MODULO" AXES
//
// The "modulo" axis attribute indicates that the axis wraps around,
// the first point immediately following the last. The most common

// uses of modulo axes are:
//
// 1. As longitude axes for globe-encircling data.
// 2. As time axes for climatological data.
//
// time: modulo = " " ; // any arbitrary string is allowed
//
// If the climatological data occurs in the years 0000 or 0001 then Ferret
// will omit the year from the output formatting.
//
// VII. CONVERTING TIME WORD DATA TO NUMERICAL DATA
//
// If the time data being converted to NetCDF format exists in string format
// (i.e. 1972 - JANUARY 15 2:15:00), rather than numerical format (i.e. 55123
// seconds) a number of TMAP routines are available to aid in the conversion
// process. The steps required for conversion are as follows:
//
// 1. Break the time string into its 6 pieces. If the data is of the
// form dd-mmm-yyyy:hh:mm:dd, the TMAP routine "tm_break_date.f" can
// be used.
// 2. Choose a time_origin before the beginning of the time data to
// assure that all time values are positive. i.e. if the data begins
// at 15-JAN-1982:05:30:00, choose a time origin of
// 15-JAN-1981:00:00:00. This time_origin should then be an attribute
// of the time axis variable in the CDL file.
// 3. Produce numerical time data by using "tm_sec_from_bc.f", which
// calculates the number of seconds between 01-01-0000:00:00:00 and
// the date specified. Continuing the example from (2), the time value
// for the first time step with respect to the time_origin could be
// calculated as follows:
//
// time(1) = tm_sec_from_bc(1982, 1, 15, 5, 30, 0) -
// tm_sec_from_bc(1981, 1, 15, 0, 0, 0)
//
// or more generally
//
// time(n)=tm_sec_from_bc(nyear,nmonth,nday,nhour,nminute,nsecond) -
// tm-sec_from_bc(oyear,omonth,oday,ohour,ominute,osecond)
//
// where nyear is the year for the nth time step and oyear is the year
// of time_origin.
//
// VII. EXAMPLE CDL FILE dimensions:

// staggered grid dimension definitions:

 slon = 160 ; // wind/salt longitude dimension
 ulon = 160 ; // velocity longitude dimension
 slat = 100 ; // wind/salt latitude dimension
 ulat = 100 ; // velocity latitude dimension
 sdepth = 27 ; // salt depth dimension
 wdepth = 27 ; // velocity depth dimension

 slon10_140 = 131 ; // for salt hyperslab
 slat80_82 = 3 ; // for salt hyperslab
 time = unlimited ;

// grid_definition is the dimension name to be used for all grid definitions

 grid_definition = 1 ;

// edge dimension definitions:

 sdepth_edges = 28 ;
 wdepth_edges = 28 ;

variables:

 // variable definitions:

 float wind(time, slat, slon) ; // 3-dimensional variable
 wind: parent_grid = "wind_grid" ;
 wind: slab_min_index = 1s, 1s, 1s, 0s ;
 wind: slab_max_index = 160s, 100s, 1s, 0s ;
 wind: long_name = "WIND" ;
 wind: units = "deg. C" ;
 wind: _FillValue = 1E34f ;
 float salt(time, sdepth, slat80_82, slon10_140) ; // 4-dim. Variable
 salt: parent_grid = "salt_grid" ;
 salt: slab_min_index = 10s, 80s, 1s, 0s ;
 salt: slab_max_index = 140s, 82s, 27s, 0s ;
 salt: long_name = "(SALINITY(ppt) - 35) /1000" ;
 salt: units = "frac. by wt. less .035" ;
 salt: _FillValue = -999.f ;

 float u(time, sdepth, ulat, ulon) ;
 u: long_name = "ZONAL VELOCITY" ;
 u: units = "cm/sec" ;
 u: _FillValue = 1E34f ;
 float v(time, sdepth, ulat, ulon) ;
 v: long_name = "MERIDIONAL VELOCITY" ;
 v: units = "cm/sec" ;
 v: _FillValue = 1E34f ;
 float w(time, wdepth, slat, slon) ;
 w: long_name = "VERTICAL VELOCITY" ;
 w: units = "cm/sec" ;
 w: _FillValue = 1E34f ;

 // axis definitions:

 float slon(slon) ;
 slon: units = "degrees" ;
 slon: point_spacing = "even" ;
 float ulon(ulon) ;
 ulon: units = "degrees" ;
 ulon: point_spacing = "even" ;
 float slat(slat) ;
 slat: units = "degrees" ;
 slat: point_spacing = "even" ;
 float ulat(ulat) ;
 ulat: units = "degrees" ;
 ulat: point_spacing = "even" ;
 float sdepth(sdepth) ;

 sdepth: units = "meters" ;
 sdepth: positive = "down" ;
 sdepth: edges = "sdepth_edges" ;
 float wdepth(wdepth) ;
 wdepth: units = "meters" ;
 wdepth: positive = "down" ;
 wdepth: edges = "wdepth_edges" ;
 float time(time) ;
 time: modulo = " " ;
 time: time_origin = "15-JAN-1981:00:00:00" ;
 time: units = "seconds" ;

 // child grid definitions:

 float slon10_140(slon10_140) ;
 slon10_140: child_axis = " " ;

 slon10_140: units = "degrees" ;
 float slat80_82(slat80_82) ;
 slat80_82: child_axis = " " ;
 slat80_82: units = "degrees" ;

 // edge axis definitions:

 float sdepth_edges(sdepth_edges) ;
 float wdepth_edges(wdepth_edges) ;

 // parent grid definition:

 char wind_grid(grid_definition) ;
 wind_grid: axes = "slon slat normal time" ;
 char salt_grid(grid_definition) ;
 salt_grid: axes = "slon slat sdepth time" ;

 // global attributes:
 :title = "NetCDF Title" ;

data:

// // ignore this block //
//This next data entry, for time, should be ignored. Time is initialized here
// only so that Ferret can read test.cdf (the file created by this cdl file)
// with no additional data inserted into it.
Time=1000;
// // end of ignored block //

slat=
-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.1513576508,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.9874248505,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.1693935394,
-9.8333206177,-9.4999876022,-9.1666536331,-8.8333196640,-8.4999856949,
-8.1666526794,-7.8333187103,-7.4999847412,-7.1666512489,-6.8333182335,
-6.4999852180,-6.1666517258,-5.8333182335,-5.4999852180,-5.1666517258,
-4.8333187103,-4.4999852180,-4.1666517258,-3.8333187103,-3.4999852180,
-3.1666517258,-2.8333184719,-2.4999852180,-2.1666519642,-1.8333185911,
-1.4999852180,-1.1666518450,-0.8333183527,-0.4999849498,-0.1666515470,
0.1666818559,0.5000152588,0.8333486915,1.1666821241,1.5000154972,

1.8333489895,2.1666824818,2.5000159740,2.8333494663,3.1666829586,
3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.8333497047,
5.1666831970,5.5000162125,5.8333497047,6.1666827202,6.5000162125,
6.8333497047,7.1666827202,7.5000166893,7.8333501816,8.1666841507,
8.5000181198,8.8333511353,9.1666851044,9.5000190735,9.8333530426,
10.1679363251,10.5137376785,10.8892869949,11.3138961792,11.8060989380,
12.3833675385,13.0618314743,13.8560228348,14.7786512375,15.8403968811,
17.0497493744,18.4128704071,19.9334945679,21.6128730774,23.4497566223,
25.4404067993,27.5786647797,29.8560409546,32.2618522644,34.7833900452,
37.4061241150,40.1139259338,42.8893203735,45.7137718201,48.5679702759;
ulat=
-27.6721439362,-25.3877544403,-23.1883945465,-21.1119174957,-19.1907978058,
-17.4507274628,-15.9094810486,-14.5761461258,-13.4507236481,-12.5241250992,
-11.7785758972,-11.1883859634,-10.7210769653,-10.3387994766,-9.9999876022,
-9.6666545868,-9.3333206177,-8.9999866486,-8.6666526794,-8.3333196640,
-7.9999856949,-7.6666517258,-7.3333182335,-6.9999847412,-6.6666512489,
-6.3333182335,-5.9999847412,-5.6666517258,-5.3333182335,-4.9999847412,
-4.6666517258,-4.3333182335,-3.9999849796,-3.6666517258,-3.3333184719,
-2.9999852180,-2.6666519642,-2.3333184719,-1.9999853373,-1.6666518450,
-1.3333184719,-0.9999850392,-0.6666516662,-0.3333182633,0.0000151545,
0.3333485723,0.6666819453,1.0000153780,1.3333487511,1.6666821241,
2.0000154972,2.3333489895,2.6666827202,3.0000162125,3.3333497047,
3.6666829586,4.0000162125,4.3333497047,4.6666827202,5.0000162125,
5.3333492279,5.6666827202,6.0000162125,6.3333492279,6.6666827202,
7.0000157356,7.3333497047,7.6666831970,8.0000171661,8.3333511353,
8.6666841507,9.0000181198,9.3333520889,9.6666860580,10.0000190735,
10.3358526230,10.6916217804,11.0869522095,11.5408391953,12.0713586807,
12.6953773499,13.4282865524,14.2837600708,15.2735414505,16.4072513580,
17.6922454834,19.1334934235,20.7334957123,22.4922523499,24.4072608948,
26.4735546112,28.6837768555,31.0283031464,33.4953994751,36.0713844299,
38.7408676147,41.4869842529,44.2916526794,47.1358833313,50.0000534058;
slon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.5,
142.5,143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.5,
154.5,155.5,156.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.5,
166.5,167.5,168.5,169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.5,
178.5,179.5,180.5,181.5,182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.5,
190.5,191.5,192.5,193.5,194.5,195.5,196.5,197.5,198.5,199.5,200.5,201.5,
202.5,203.5,204.5,205.5,206.5,207.5,208.5,209.5,210.5,211.5,212.5,213.5,
214.5,215.5,216.5,217.5,218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.5,
226.5,227.5,228.5,229.5,230.5,231.5,232.5,233.5,234.5,235.5,236.5,237.5,
238.5,239.5,240.5,241.5,242.5,243.5,244.5,245.5,246.5,247.5,248.5,249.5,
250.5,251.5,252.5,253.5,254.5,255.5,256.5,257.5,258.5,259.5,260.5,261.5,
262.5,263.5,264.5,265.5,266.5,267.5,268.5,269.5,270.5,271.5,272.5,273.5,
274.5,275.5,276.5,277.5,278.5,279.5,280.5,281.5,282.5,283.5,284.5,285.5,
286.5,287.5,288.5,289.5;
ulon=
131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,
143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,
155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,
167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,
179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,
191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,
203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,
215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,

227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,
239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,
251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,
263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,
275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,
287.0,288.0,289.0,290.0;
sdepth=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0,
177.5,205.0,240.0,288.5,362.5,483.5,680.0,979.5,1395.5,1916.0,2524.0,3174.0,
3824.0;
sdepth_edges=
0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,
145.0,165.0,190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,
2849.0,3499.0,4149.0;
wdepth=
10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,145.0,165.0,
190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,2849.0,3499.0,
4149.0;
wdepth_edges=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,94.375,105.625,119.375,135.625,
153.75,176.25,202.5,235.75,280.0,347.5,460.75,651.25,950.0,1372.75,1895.0,
2524.0,3174.0,3986.5,4311.0;
slon10_140=
 139.5, 140.5, 141.5, 142.5, 143.5, 144.5, 145.5, 146.5, 147.5,
 148.5, 149.5, 150.5, 151.5, 152.5, 153.5, 154.5, 155.5, 156.5, 157.5,
 158.5, 159.5, 160.5, 161.5, 162.5, 163.5, 164.5, 165.5, 166.5, 167.5,
 168.5, 169.5, 170.5, 171.5, 172.5, 173.5, 174.5, 175.5, 176.5, 177.5,
 178.5, 179.5, 180.5, 181.5, 182.5, 183.5, 184.5, 185.5, 186.5, 187.5,
 188.5, 189.5, 190.5, 191.5, 192.5, 193.5, 194.5, 195.5, 196.5, 197.5,
 198.5, 199.5, 200.5, 201.5, 202.5, 203.5, 204.5, 205.5, 206.5, 207.5,
 208.5, 209.5, 210.5, 211.5, 212.5, 213.5, 214.5, 215.5, 216.5, 217.5,
 218.5, 219.5, 220.5, 221.5, 222.5, 223.5, 224.5, 225.5, 226.5, 227.5,
 228.5, 229.5, 230.5, 231.5, 232.5, 233.5, 234.5, 235.5, 236.5, 237.5,
 238.5, 239.5, 240.5, 241.5, 242.5, 243.5, 244.5, 245.5, 246.5, 247.5,
 248.5, 249.5, 250.5, 251.5, 252.5, 253.5, 254.5, 255.5, 256.5, 257.5,
 258.5, 259.5, 260.5, 261.5, 262.5, 263.5, 264.5, 265.5, 266.5, 267.5,
 268.5, 269.5 ;
slat80_82=
 11.8060989379883, 12.3833675384522, 13.0618314743042 ;

}

Ch10 Sec4. CREATING A MULTI-FILE NETCDF DATA SET

Ferret supports collections of NetCDF files that are regarded as a single NetCDF data set. Such data
sets are referred to as "MC" (multi CDF) data sets. They are defined via a descriptor file, in the style of
TMAP-formatted data sets. These are FORTRAN NAMELIST-formatted files. Slight variations in
syntax exist between systems. The requirements for an MC data set are described in the chapter "Data
Set Basics", section "Multi-file NetCDF data sets".

Previous to version 5.2 Ferret performs sanity checking on the data set by comparing these time
coordinates with those found in the data files as he data are read. In version 5.3 and higher no sanity
checks are performed. This means that the MC descriptor mechanism can be used to associate into time
series groups of files that are not internally self-documenting with respect to time, however, it also
shifts an additional burden onto the user of carefully checking the validity of the STEPFILE records in
the descriptor files.

The fields which are essential to consider are

$FORMAT_RECORD

 D_TYPE = ' MC' ,
 D_FORMAT = ' 1A',

which must be exactly as shown.

$BACKGROUND_RECORD

 D_TITLE = 'Put your data set title here',

where you can insert a data sets title to appear on plots and listings;

 D_T0TIME = '14-JAN-1980 14:00:00',

which corresponds exactly to the /T0 qualifier on the DEFINE AXIS command

 D_TIME_UNIT = 3600.0,

which contains the same information as /UNITS= on the DEFINE AXIS command encoded as
numbers of seconds . (/UNITS="minutes" corresponds to D_TIME_UNIT = 60., /UNITS="hours"
corresponds to D_TIME_UNIT = 3600., etc.)

 D_CALTYPE = 360_DAY,

to specify the name of the calendar if your time axis is not on the standard Gregorian calendar. See the
discussion of time axes and calendars (p. 120) for more on the calendars available.

$STEPFILE_RECORD

 S_FILENAME = 'mtaa063-nc.001',

which points to the individual file names. Typically you will need one STEPFILE_RECORD for each
file in the series, however if the files are named with extension .001, .002, ... you can use
S_NUM_OF_FILES below.

 S_START = 17592.0,

which contains the time step value of the first time step in the file. (For help determining the time step
values use DEFINE AXIS to create the desired time axis (say, my_t_ax) and then use LIST
T[gt=my_t_ax] to see the dates and time steps.)

 S_END = 34309.0,

which contains the time step value of the last time step in the file (or group of files if
S_NUM_OF_FILES is greater than 1). If there is only a single time step in the file set S_END identical
to S_START.

 S_DELTA = 73.0,

which contains the delta value separating time steps within in the file. If there is only a single time step
in the file set S_DELTA = 1.

 S_NUM_OF_FILES = 23,

Normally S_NUM_OF_FILES should be omitted or should have a value of 1. Use it for the special
case that your files are named with ending .001, .002, in which case you can describe them all with a
single STEPFILE_RECORD as in the example. (S_DELTA must then also describe the delta between
the last time step in each file and the first time step in the next file of the series.)

A typical MC descriptor file is given below. This file ties into a single data set the 23 files named
mtaa063-nc.001 through mtaa063-nc.024. The time steps are encoded in the descriptor file through the
S_START and S_END values.

Descriptor files have a space before the $ in the record headers, and comment lines begin with a *. In
addition there are differences in the formatting of descriptor files depending on the operationg system.
 Here is an FAQ which addresses these differences:

http://ferret.wrc.noaa.gov/Ferret/FAQ/system/linux_mc_descriptors.html

* NOAA/PMEL Tropical Modeling and Analysis Program, Seattle, WA. *
* created by MAKE_DESCRIPT rev. 4.01 *

$FORMAT_RECORD
 D_TYPE = ' MC',
 D_FORMAT = ' 1A',
 D_SOURCE_CLASS = 'MODEL OUTPUT',
$END
$BACKGROUND_RECORD
 D_EXPNUM = '0063',
 D_MODNUM = ' AA',
 D_TITLE = 'MOM model output forced by Sadler winds',
 D_T0TIME = '14-JAN-1980 14:00:00',

http://ferret.wrc.noaa.gov/Ferret/FAQ/system/linux_mc_descriptors.html

 D_TIME_UNIT = 3600.0,
 D_TIME_MODULO = .FALSE.,
 D_ADD_PARM = 15*' ',
$END
$MESSAGE_RECORD
 D_MESSAGE = ' ',
 D_ALERT_ON_OPEN = F,
 D_ALERT_ON_OUTPUT = F,
$END

$EXTRA_RECORD
$END

$STEPFILE_RECORD
 s_filename = 'mtaa063-nc.001',
 S_AUX_SET_NUM = 0,
 S_START = 17592.0,
 S_END = 34309.0,
 S_DELTA = 73.0,
 S_NUM_OF_FILES = 23,
 S_REGVARFLAG = ' ',
$END
**
$STEPFILE_RECORD
 s_filename = '**END OF STEPFILES**'

$END
**

CH11

Chapter 11: WRITING EXTERNAL FUNCTIONS

Ch11 Sec1. OVERVIEW

External functions are user-written Fortran routines which are called from the Ferret command line just as internal Ferret
functions (e.g. SIN, COS) are invoked. For example, you might create a routine to compute the amplitudes of the Fourier
transform of a time series (the periodogram) and name your function "FFT_AMP". In Ferret you would use it like this:

LET my_fft = FFT_AMP(my_time_series)

Once the variable my_fft is defined, it can be used in other expressions, plotted, etc. External functions can be used in every way
that Ferret internal functions are used and are distinguished only by their appearance after internal functions when the user issues
a SHOW FUNC command.

A Ferret external function uses input arguments defined in a Ferret session and computes a result with user-supplied Fortran
code. The external function specifies how the grid for the result will be generated. The axes can be inherited from the input
arguments or specified in the external function code.

Utility functions, linked in when the external function is compiled, obtain information from Ferret about variables and grids. The
utility functions are described in section 6 (p. 266).

Ferret external functions are compiled individually to create shared object (.so) files. These are dynamically linked with Ferret at
run time. Ferret looks for shared object files in the directories specified in the FER_EXTERNAL_FUNCTIONS environment
variable.

Ch11 Sec2. GETTING STARTED

Ferret Version 5.0 and later contains everything you need to run the external functions which are included with the distribution.
The environment variable FER_EXTERNAL_FUNCTIONS is defined, listing the directory where the shared object files reside.
To see a list of the included external functions and their arguments, type

> ferret
…
yes? SHOW FUNC/EXTERNAL
Externally defined functions available to Ferret:
ADD_9(A,B,C,D,E,F,G,H,I)
 (demonstration function) adds 9 arguments
AVET(A)
 (demonstration function) returns the time average
 A: data to be time averaged
...

Ch11 Sec2.1. Getting example/development code

To write your own external functions, you will need to get source code and set up a directory in which to work. All of the source
code you need to get started (Makefiles, common files, simple examples) can be obtained from the Ferret Home Page. Go to the
External Functions page and follow the instructions there.

You will need to download a tar file to get started. When you untar this file you will find that the ef_utility/ directory

http://www.ferret.noaa.gov/Ferret/External_Functions/

contains the ferret_cmn subdirectory, containing common files that you need to compile external functions. The
ef_utility/ directory must be in place before you can compile any of the other external function code. The examples/
directory contains source code and a Makefile. You will create further directories with your external functions source code
and Makefiles patterned on what is in the examples directory.

Ch11 Sec3. QUICK START EXAMPLE

It's always easier to start coding from an example. Any of the external functions we provide should be documented well enough
to serve as a starting point for writing a new function. In this section, we take the most trivial example function, pass_thru, and
alter it to do something a little more interesting, if no more useful.

Ch11 Sec3.1. The times2bad20 function

We'll use the pass_thru(...) function as a template, modifying it into a times2bad20(...) function. This new function will multiply
all values by 2.0 and will replace missing value flags with the value 20.0.

Inside any of the example functions, the areas that you need to (are allowed to) modify are set off with

* *************************
* USER CONFIGURABLE PORTION
*
*

->Insert your code here<-

*
*
* USER CONFIGURABLE PORTION
* *************************

Here's what you need to do to create the new function:

1. move to the examples/ directory

2. copy pass_thru.F to times2bad20.F

3. use your favorite editor to change each "pass_thru" to "times2bad20"

4. go down into the "times2bad20_init" section and change the description of the function

5. go to the "times2bad20_compute" subroutine and change the code to look like this

 c* result(i,j,k,l) = bad_flag_result
 result(i,j,k,l) = 20

 ELSE

 c* result(i,j,k,l) = arg1(i,j,k,l)
 result(i,j,k,l) = 2 * arg1(i,j,k,l)

Assuming you have downloaded all of the ef_utility/ directory development code and you are still in the examples/
directory, you should be able to (Figure 11_1)

 > make times2bad20.so
 > setenv FER_EXTERNAL_FUNCTIONS .
 > ferret
 …
 yes? use coads_climatology
 yes? let a = times2bad20(sst)
 yes? shade a[l=1]

Congratulations! You have just written your first external function.

Ch11 Sec4. ANATOMY OF AN EXTERNAL FUNCTION

Every Ferret external function contains an ~_init subroutine which describes the external function's arguments and result grid
and a ~_compute subroutine which actually performs the calculation. Three other subroutines are available for requesting
memory allocation; creating axis limits for the result variable which are extended with respect to the defined region (useful for
derivative calculations, etc.); and creating custom axes for the result.

For the following discussion we will assume that our external function is called efname (with source code in a file named
efname.F). Examples are also taken from the external functions examples/ directory which you installed when you
downloaded the external functions code. This section will briefly describe the work done by the ~_init and ~_compute
subroutines. The individual utility functions called by these subroutines are described in the section on Utility Functions below.

When you name your external functions, be aware that Ferret will search its internal function names before the external function
names. So if you use a name that is already in use, your function will not be called. Use SHOW FUNCTION from Ferret to list
the names that already are in use

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ch11_fig01.GIF

Ch11 Sec4.1. The ~_init subroutine (required)

subroutine efname_init (id)

This subroutine specifies basic information about the external function. This information is used when Ferret parses the
command line and checks the number of arguments; when it generates the output of SHOW FUNCTION/EXTERNAL; and in
determining the result grid.

The following code from examples/subtract.F shows a typical example of an ~_init subroutine. For an example with
more arguments please look at examples/add_9.F. For an example where a result axis is reduced with respect to the
equivalent input axis take a look at examples/percent_good_t.F.

 SUBROUTINE subtract_init(id)

 INCLUDE 'ferret_cmn/EF_Util.cmn'

 INTEGER id, arg

* *************************
* USER CONFIGURABLE PORTION
*
*

 CALL ef_set_desc(id,'(demonstration function) returns: A - B')

 CALL ef_set_num_args(id, 2) ! Maximum allowed is 9
 CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
 . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
 CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)

 arg = 1
 CALL ef_set_arg_name(id, arg, 'A')
 CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

 arg = 2
 CALL ef_set_arg_name(id, arg, 'B')
 CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
*
*
* USER CONFIGURABLE PORTION
* *************************

 RETURN
 END

Ch11 Sec4.2. The ~_compute subroutine (required)

subroutine efname_compute (id, arg_1, arg_2, ..., result, wkr_1, wrk_2, ...)

This subroutine does the actual calculation. Arguments to the external function and any requested working storage arrays are
passed in. Dimension information for the subroutine arguments is obtained from Ferret common blocks in
ferret_cmn/EF_mem_subsc.cmn. The mem1lox:mem1hix, etc. values are determined by Ferret and correspond to the
region requested for the calculation.@Body Text = In the ~_compute subroutine you may call other subroutines which are not
part of the efname_compute.F source file.

 SUBROUTINE subtract_compute(id, arg_1, arg_2, result)

 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

 INTEGER id

 REAL bad_flag(EF_MAX_ARGS), bad_flag_result
 REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
 . mem1loz:mem1hiz, mem1lot:mem1hit)
 REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy,
 . mem2loz:mem2hiz, mem2lot:mem2hit)
 REAL result(memreslox:memreshix, memresloy:memreshiy,
 . memresloz:memreshiz, memreslot:memreshit)

* After initialization, the 'res_' arrays contain indexing information
* for the result axes. The 'arg_' arrays will contain the indexing
* information for each variable's axes.

 INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
 INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
 . arg_incr(4,EF_MAX_ARGS)

* *************************
* USER CONFIGURABLE PORTION
*
*
 INTEGER i,j,k,l
 INTEGER i1, j1, k1, l1
 INTEGER i2, j2, k2, l2

 CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
 CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

 …

*
* USER CONFIGURABLE PORTION
* *************************

 RETURN
 END

Please see the "Loop Indices" section for the example calculation.4.3

Ch11 Sec4.3. The ~_work_size subroutine (required when work arrays are defined)

This routine allows the external function author to request that Ferret allocate memory (working storage) for use by the external
function. The memory allocated is passed to the external function when the ~compute subroutine is called. The working
storage arrays are assumed to be REAL*4 arrays; adjust the size of the arrays for other data types. See the sample code under
ef_get_coordinates (p. 277) for an example of allocating a REAL*8 work array. The working storage is deallocated after the
~compute subroutine returns.

When working storage is to be requested, a call to ef_set_num_work_arrays must be in the ~init subroutine:

SUBROUTINE efname_init (id)
…
CALL ef_set_num_work_arrays (id,2)

A maximum of 9 work arrays may be declared. At the time the ~work_size subroutine is called by Ferret, any of the utility
functions that retrieve information from Ferret may be used in the determination of the appropriate working storage size.

Here is an example of a ~work_size subroutine:

 SUBROUTINE efname_work_size(id)
 INCLUDE 'ferret_cmn/EF_Util.cmn'

 INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
 INTEGER id
*
* ef_set_work_array_lens(id, array #, X len, Y len, Z len, T len)
*
 INTEGER nx, ny, id
 INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
 . arg_incr(4,1:EF_MAX_ARGS)
 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

 NX = 1 + (arg_hi_ss(X_AXIS,ARG1) - arg_lo_ss(X_AXIS,ARG1))
 NY = 1 + (arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1))

 CALL ef_set_work_array_lens(id,1,NX,NY,1,1)
 CALL ef_set_work_array_lens(id,2,NX,NY,1,1)
*

 RETURN

In the argument list of the ~compute subroutine, the work array(s) come after the result variable. Declare the workspace arrays
using index bounds wrk1lox:wrk2hix, … which were set by the ef_set_work_array_lens call above.

 SUBOUTINE efname_compute (arg_1, result, workspace1, workspace2)
…

* Dimension the work arrays
 REAL workspace1(wrk1lox:wrk1hix, wrk1loy:wrk1hiy,
 . wrk1loz:wrk1hiz, wrk1lot:wrk1hit)
 REAL workspace2(wrk2lox:wrk2hix, wrk2loy:wrk2hiy,
 . wrk2loz:wrk2hiz, wrk2lot:wrk2hit)

Ch11 Sec4.4. The ~_result_limits subroutine (required if result has a custom or abstract axis)

The result limits routine sets the limits on ABSTRACT and CUSTOM axes created by the external function.

An example ~result_limits routine might look like this:

 SUBROUTINE my_result_limits(id)
 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INTEGER id, arg, NF
*
 INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
 . arg_incr(4,EF_MAX_ARGS)
 INTEGER lo, hi

 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

 arg = 1
 lo = 1
 hi = (arg_hi_ss(T_AXIS,arg) - arg_lo_ss(T_AXIS,arg) + 1)/ 2
 call ef_set_axis_limits(id, T_AXIS, lo, hi)

 RETURN
 END

Ch11 Sec4.5. The ~_custom_axes subroutine (required if result has a custom axis)

The ~custom_axes subroutine allows the external function author to create new axes that will be attached the the result of the

~compute subroutine. An example of such a function might take time series data with a time axis and create, as a result, a
Fourier transform with a frequency axis.

The ~custom_axes subroutine must be used with care because not all the Ferret internal information is available to the
external function at the time Ferret calls this routine. Ferret must determine the grid on which a variable is defined before it
actually evaluates the variable. This is fundamental to the delayed evaluation framework -- the aspect of Ferret that makes it
possible to work with multi-gigabyte data sets while having minimal awareness of memory limitations. The ~custom_axes
routines are called at the time that Ferret determines grid. Certain types of information are not available to Ferret (or to you, as
author of an external function) during this time. The information which is not available is

1. the values of arguments to the function (capability to get the value of a scalar argument is being implemented for a future
version)

2. context information specified with SET REGION

3. context information set with command qualifiers such as

 CONTOUR/X=130e:80w

Items two and three are because this information is mutable -- it may be changed when the function is actually invoked.

The context information which IS available is

 1. information that is actually contained in the function call, such as the X limits of

 LET myvar = MY_EFN(v[x=130e:80w])

 2. information that is embedded in nested variable definitions, such as the X limits of

 LET tmp_var = v[x=130e:80w]
 LET myvar = MY_EFN(tmp_var)

If no context information is available through these means then the context information supplied by the call to
ef_get_arg_subscripts will be the full span (low and high limits) of the relevant axes.

Examples:

You can set an axis explicitly in subroutine my_fcn_custom_axes:

SUBROUTINE custom_custom_axes(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id
CALL ef_set_custom_axis(id, T_AXIS, 0.0, 1000.0, 25.0, 'Hertz', NO)
RETURN
END

Also, you can define an axis using information about the argument, as in the FFT functions which set up a frequency axis based
on the input time axis (somewhat simplified here):

SUBROUTINE ffta_sample_custom_axes(id)

INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id
INTEGER nfreq_lo_l, nfreq_hi_l

INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
 . arg_incr(4,EF_MAX_ARGS)
INTEGER arg
INTEGER nfreq, nd

REAL yquist, freq1, freqn
REAL boxsize(1)

arg = 1
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

CALL ef_get_box_size(id, arg, T_AXIS, arg_lo_ss(T_AXIS,arg),
 . arg_lo_ss(T_AXIS,arg), boxsize)

nfreq_lo_l = arg_lo_ss(T_AXIS,arg)
nfreq_hi_l = arg_hi_ss(T_AXIS,arg)

nd = abs(nfreq_hi_l - nfreq_lo_l) + 1

nfreq = nd/2
yquist = 1./(2.*boxsize(1)) ! Nyquist frequency

freq1 = 1.* yquist/ float(nfreq)
freqn = 1.001*yquist

C Set label for the frequency axis CYC/units.

outunits = 'cyc/day'
CALL ef_set_custom_axis (id, T_AXIS, freq1, freqn, freq1, outunits, NO)

RETURN
END

Ch11 Sec5. NOTES AND SUGGESTIONS

Ch11 Sec5.1. Inheriting axes

When creating an external function, you can get Ferret to do a lot of conformability checking for you if you "inherit axes"
properly. This means that Ferret can be responsible for making sure that the arguments you pass to the function are of the proper
dimensionality to be combined together in basic operations such as addition, multiplication etc. For any given axis orientation, X,
Y, Z, or, T, two arguments are said to be conformable on that axis if 1) they are either of the same length, or 2) at least one of the
arguments has a size of 1 on the axis. (The terminology "size of 1" may equivalently be thought of as a size of 0. In other words,
the data is normal to this axis.) When Ferret encounters a problem it will send an error message rather than passing the data to
your external function which might result in a crash.

To get Ferret to do this kind of checking you should inherit axes from as many appropriate arguments as possible. For instance,
in subtract.F we have the following sections of code:

 subtract_init(...)

…
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
...

This means that the axes of the result, and the index range of the result on those axes, will be determined by arguments.

…

arg = 1
CALL ef_set_arg_name(id, arg, 'A')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

arg = 2
CALL ef_set_arg_name(id, arg, 'B')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
...

Here we specify that each result axis is dependent upon the axes from both arguments. When Ferret sees this, it knows the
arguments must be conformable before it passes them to the external function.

The advantages of this approach are best understood by thinking about this example function "MY_ADD_FUNCTION," which
performs a simple addition:

LET arg1 = X[x=0:1:.1]
LET arg2 = Y[Y=101:102:.05]
LET my_result = MY_ADD_FUNCTION(arg1, arg2)

The desired outcome is that "my_result" is a 2-dimensional field which inherits its X axis from arg1 and its Y axis from arg2.

If arguments and result are on the same grid, you should inherit all axes from all arguments. In general, you should inherit axes
from as many arguments as possible.

Ch11 Sec5.2. Loop indices

Note: Array indices need not start at 1.

Because the data passed to an external function is often a subset of the full data set, array indices need not start at 1.

Note: Indices on separate arguments are not necessarily the same.

This might occur, for instance, with variables from different data sets.

Because of this, we need to ask Ferret what the appropriate index values are for the result axes and for each axis of each
argument. We also need to know whether the increment for each axis of each argument is 0 or 1. An increment of 0 would be
returned, for example, as the Y axis increment of an argument which which was only defined on the X axis. The data for this
argument would be replicated along the Y axis when needed in a calculation.

The following section of code from subtract.F retrieves the index and increment information:

…
CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
...

Once we have this information we must make sure that we don't mix and match indices. It's possible that you can write code
which will work in the very simplest cases but will fail when you try something like:

yes? let a = my_func(sst[d=1],airt[d=2])
yes? plot a[l=@ave]

The solution is straightforward if not very pretty: Assign a separate index to each axis of each argument and index them all
separately. The code in subtract.F shows how to do it with two arguments:

 …

 i1 = arg_lo_ss(X_AXIS,ARG1)
 i2 = arg_lo_ss(X_AXIS,ARG2)
 DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)

 j1 = arg_lo_ss(Y_AXIS,ARG1)
 j2 = arg_lo_ss(Y_AXIS,ARG2)
 DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)

 k1 = arg_lo_ss(Z_AXIS,ARG1)
 k2 = arg_lo_ss(Z_AXIS,ARG2)
 DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)

 l1 = arg_lo_ss(T_AXIS,ARG1)
 l2 = arg_lo_ss(T_AXIS,ARG2)
 DO 100 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)

 IF (arg_1(i1,j1,k1,l1) .EQ. bad_flag(1) .OR.
 . arg_2(i2,j2,k2,l2) .EQ. bad_flag(2)) THEN

 result(i,j,k,l) = bad_flag_result

 ELSE

 result(i,j,k,l) = arg_1(i1,j1,k1,l1) -
 . arg_2(i2,j2,k2,l2)

 END IF

 l1 = l1 + arg_incr(T_AXIS,ARG1)
 l2 = l2 + arg_incr(T_AXIS,ARG2)
100 CONTINUE

 k1 = k1 + arg_incr(Z_AXIS,ARG1)
 k2 = k2 + arg_incr(Z_AXIS,ARG2)
200 CONTINUE

 j1 = j1 + arg_incr(Y_AXIS,ARG1)
 j2 = j2 + arg_incr(Y_AXIS,ARG2)
300 CONTINUE

 i1 = i1 + arg_incr(X_AXIS,ARG1)
 i2 = i2 + arg_incr(X_AXIS,ARG2)
400 CONTINUE
 ...

Ch11 Sec5.3. Reduced axes

For external functions we introduce the concept of "axis reduction." The result of an external function will have axes which are
either RETAINED or REDUCED with respect to the argument axes from which they are inherited. By default, all result axes
have their axis reduction flag set to RETAINED. Every result axis which has it axis inheritance flag set to IMPLIED_BY_ARGS
will have the same extent (context) as the argument axis from which it inherits. Setting the axis reduction flag to REDUCED
means that the result axis is reduced to a point by the external function.

The axis reduction flag only needs to be applied when the result is reduced to a point but SET REGION information should still
be applied to the external function arguments. (e.g. a function returning a status flag) In such a case the result axes should be
IMPLIED_BY_ARGS and REDUCED. (as opposed to NORMAL and RETAINED)

The percent_good_t.F function is a good example of where the axis reduction flag needs to be set. This function takes a 4D
region of data and returns a time series of values representing the percentage of good data at each time point. Inside the
percent_good_t_init subroutine we see that the X, Y and Z axes are reduced with respect to the incoming argument:

* *************************
* USER CONFIGURABLE PORTION
*
* CALL ef_set_desc(id,
 . '(demonstration function) returns % good data at each time')
 CALL ef_set_num_args(id, 1)
 CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
 . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
 CALL ef_set_axis_reduction(id, REDUCED, REDUCED, REDUCED,
 . RETAINED)
 CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)
 arg = 1
 CALL ef_set_arg_name(id, arg, 'A')
 CALL ef_set_arg_desc(id, arg, 'data to be checked')
 CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
* *
*
* USER CONFIGURABLE PORTION
* *************************

This arrangement allows the user to specify an X/Y/Z region of interest and have this region information used when the argument
is passed to the function. If we had specified X/Y/Z as NORMAL axes, Ferret would have understood this to mean that all region
information for these three axes can be ignored when the percent_good_t function is called. This is not what we want.

Ch11 Sec5.4. String Arguments

Ferret can pass strings to external functions. This may be useful if you are writing external functions to write a new output
format, for example, and wish to pass the output filename as an argument.

By default, all arguments are assumed to be of type FLOAT_ARG. In the ~init subroutine, the external function must tell Ferret
which arguments are to be handled as strings:

arg = 1
CALL ef_set_arg_type(id, arg, STRING_ARG)
CALL ef_set_arg_name(id, arg, 'message')
CALL ef_set_arg_desc(id, arg, 'String to be written when executing.')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

In the ~compute subroutine, a pointer to the string argument is passed in and dimensioned as any other argument. A text
variable must be declared and a utility function is used to get the actual text string. As an example:

 SUBROUTINE string_args_compute(id, arg_1, arg_2, result)

 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

 INTEGER id

 REAL bad_flag(1:EF_MAX_ARGS), bad_flag_result
 REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
 . mem1loz:mem1hiz, mem1lot:mem1hit)

 REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy,
 . mem2loz:mem2hiz, mem2lot:mem2hit)
 REAL result(memreslox:memreshix, memresloy:memreshiy,
 . memresloz:memreshiz, memreslot:memreshit)

 INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
 INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
 . arg_incr(4,1:EF_MAX_ARGS)

 CHARACTER arg1_text*160

* *************************
* USER CONFIGURABLE PORTION
*
*
 INTEGER i,j,k,l
 INTEGER i1, j1, k1, l1

 CALL ef_get_arg_string(id, 1, arg1_text)

 WRITE(6,49) arg1_text
49 FORMAT ('The text for arg1 is : ''',a,'''')

 …

Ch11 Sec6. UTILITY FUNCTIONS

The lists below describe the utility functions built into Ferret which are available to the external function writer. These are used
to set parameters associated with the external function and to retrieve information provided by Ferret. (Input variables, sending
information to Ferret, are in plain type and output variables, getting information from Ferret, are in italic.)

Ch11 Sec6.1. EF_Util.cmn

External functions need to include the EF_Util.cmn file in each subroutine in order to use various pre-defined parameters.
These parameters are defined in the table below:

Parameters defined in EF_Util.cmn

To make the code more readable:

X_AXIS (=1) ARG1 (=1) ARG5 (=5) ARG9 (=9)

Y_AXIS (=2) ARG2 (=3) ARG6 (=6) YES (=2)

Z_AXIS (=3) ARG3 (=3) ARG7 (=7) NO (=0)

T_AXIS (=4) ARG4 (=4) ARG8 (=8)

Internal parameters for Ferret:

CUSTOM result axis is defined by the external function

IMPLIED_BY_ARGS result axis is inherited from one (or more) of the arguments

NORMAL this axis does not exist in the result

ABSTRACT result axis is an indexed axis [1:N]

RETAINED result axis has same extent as argument axis

REDUCED result axis is reduced to a point

Ch11 Sec6.2. Available utility functions

Setting Parameter

● ef_set_desc(id, desc) (p. 268)
● ef_set_num_args(id, num) (p. 268)
● ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn) (p. 269)
● ef_set_axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc) (p. 269)
● ef_set_arg_name(id, arg, name) (p. 269)
● ef_set_arg_desc(id, arg, desc) (p. 270)
● ef_set_arg_unit(id, arg, unit) (p. 270)
● ef_set_arg_type(id, arg, type) (p. 270)
● ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn) (p. 271)
● ef_set_axis_reduction(id, Xred, Yred, Zred, Tred) (p. 271)
● ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt) (p. 270)
● ef_set_axis_limits(id, axis, lo, hi) (p. 271)
● ef_set_custom_axis(id, axis, lo, hi, delta, unit, modulo) (p. 272)
● ef_set_num_work_arrays(id, num) (p. 272)
● ef_set_work_array_dims(id, array, Xlo, Ylo, Zlo, Tlo, Xhi, Yhi, Zhi, Thi) (p. 272)

Getting Information

For all calculations

● ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) (p. 273)
● ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) (p. 275)
● ef_get_bad_flags(id, bad_flag, bad_flag_result) (p. 276)

Text

● ef_get_arg_info(id, arg, name, title, units) (p. 273)
● ef_get_arg_string(id, arg, text) (p. 273)
● ef_get_axis_info(id, arg, name, units, bkwd, modulo, regular) (p. 274)
● ef_get_axis_dates(id, arg, tax, numtimes, datebuf) (p. 274)

Values

● ef_get_arg_ss_extremes(id, arg, ss_min, ss_max) (p. 276)
● ef_get_coordinates(id, arg, axis, lo, hi, coords) (p. 277)
● ef_get_box_size(id, arg, axis, lo, hi, size) (p. 278)
● ef_get_box_limits(id, arg, axis, lo, hi, lo_lims, hi_lims) (p. 279)
● ef_get_one_val(id, arg, value) (p. 279)

Other

● ef_version_test(version) (p. 280)
● ef_bail_out(id, text) (p. 280)

Ch11 Sec6.2.1. ef_set_desc(id, desc)

Assign a text string description to the external function.

Input arguments:

1. INTEGER id: external function's ID number

2. CHARACTER*(*) desc: description of this function

Ch11 Sec6.2.2. ef_set_num_args(id, num)

Specify the number of arguments this function will accept. The maximum number of arguments allowed is 9

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER num: number of arguments for this function

Ch11 Sec6.2.3. ef_set_axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc)

Specify where the result axes will come from. The acceptable values for each axis will be one of:

CUSTOM result axis is defined by the external function

IMPLIED_BY_ARGS result axis is inherited from one (or more) of the arguments

NORMAL this axis does not exist in the result

ABSTRACT result axis is an indexed axis [1:N]

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER Xsrc: inheritance flag for the X axis

3. INTEGER Ysrc: inheritance flag for the Y axis

4. INTEGER Zsrc: inheritance flag for the Z axis

5. INTEGER Tsrc: inheritance flag for the T axis

Ch11 Sec6.2.4. ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn)

Tell Ferret whether it is ok to break up calculations along a particular axis. (Not implemented as of Ferret v5.22, EF version 1.3)

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER Xyn: yes/no flag for the X axis

3. INTEGER Yyn: yes/no flag for the Y axis

4. INTEGER Zyn: yes/no flag for the Z axis

5. INTEGER Tyn: yes/no flag for the T axis

Ch11 Sec6.2.5. ef_set_arg_name(id, arg, name)

Assign a text string name to an argument.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. CHARACTER*(*) name: argument name

Ch11 Sec6.2.6. ef_set_arg_desc(id, arg, desc)

Assign a text string description to an argument.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. CHARACTER*(*) desc: argument description

Ch11 Sec6.2.7. ef_set_arg_unit(id, arg, unit)

Assign a text string to an argument's units.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. CHARACTER*(*) unit: unit description

Ch11 Sec6.2.8. ef_set_arg_type(id, arg, type)

Specify the type of an argument as either FLOAT_ARG or STRING_ARG. In the ~_compute subroutine, the
ef_get_arg_string() function is used to obtain the desired text string.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER type: either FLOAT_ARG or STRING_ARG

Ch11 Sec6.2.9. ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt)

Tell Ferret to extend the range of data passed for an argument. This is useful for cases like smoothers where the result at a
particular point depends upon a range of input values around that point.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER axis: axis number

4. INTEGER lo_amt: extension to the lo range (–1 means get one more point than in the result)

5. INTEGER hi_amt: extension to the hi range (+1 means get one more point than in the result)

Ch11 Sec6.2.10. ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn)

Specify whether this argument's axes "influence" the result axes. A value of YES for a particular axis means that the result should
have the same axis as this argument. If the result should have the same axis as several input arguments, then each argument
should specify YES for the axis in question. Note that ef_set_axis_inheritance must have specified
IMPLIED_BY_ARGS for this axis.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER Xyn: influence flag for the X axis

4. INTEGER Yyn: influence flag for the Y axis

5. INTEGER Zyn: influence flag for the Z axis

6. INTEGER Tyn: influence flag for the T axis

Ch11 Sec6.2.11. ef_set_axis_reduction(id, Xred, Yred, Zred, Tred)

Specify whether the result axes are RETAINED or REDUCED with respect to the argument axes from which they are inherited.
Setting the axis reduction flag to REDUCED means that the result axis is reduced to a point by the external function. The axis
reduction flag need only be set when the result is reduced to a point but SET REGION information should still be applied to the
external function arguments.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER Xred: reduction flag for the X axis

3. INTEGER Yred: reduction flag for the Y axis

4. INTEGER Zred: reduction flag for the Z axis

5. INTEGER Tred: reduction flag for the T axis

Ch11 Sec6.2.12. ef_set_axis_limits(id, axis, lo, hi)

Specify the lo and hi limits of an axis. (This is not needed for most functions and must appear in a separate subroutine named
~func_name~_result_limits(id)).

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER axis: axis number

3. INTEGER lo: index value of the lo range of this axis

4. INTEGER hi: index value of the hi range of this axis

Ch11 Sec6.2.13. ef_set_custom_axis(id, axis, lo, hi, delta, unit, modulo)

Create a custom axis. This is only used by functions which create a custom axis and must appear in a separate subroutine named
~func_name~_custom_axes(id). See also the discussion of the custom_axis subroutine (p. 260)

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER axis: axis number

3. REAL lo: coordinate value of the lo range of this axis

4. REAL hi: coordinate value of the hi range of this axis

5. REAL delta: increment for this axis

6. CHARACTER*(*) unit: unit for this axis

7. INTEGER modulo: flag for modulo axes (1 = modulo)

Ch11 Sec6.2.14. ef_set_num_work_arrays(id, nwork)

Set the number of work arrays to be allocated. The maximum number of work arrays allowed is 9.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER nwork: number of storage arrays

Ch11 Sec6.2.15. ef_set_work_array_dims(id, iarray, xlo, ylo, zlo, tlo, xhi, yhi, zhi, thi)

Set the working array axis lengths.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarray: array number

3. INTEGER xlo: index value of the lo range of x axis

4. INTEGER ylo: index value of the lo range of y axis

5. INTEGER zlo: index value of the lo range of z axis

6. INTEGER tlo: index value of the lo range of t axis

7. INTEGER xhi: index value of the hi range of x axis

8. INTEGER yhi: index value of the hi range of y axis

9. INTEGER zhi: index value of the hi range of z axis

10. INTEGER thi: index value of the hi range of t axis

Ch11 Sec6.2.16. ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)

Return lo and hi indices and increments to be used in looping through the calculation of the result.

Input arguments:

1. INTEGER id: external function's ID number

Output arguments:

1. INTEGER res_lo_ss(4): the lo end indices for the X, Y, Z, T axes of the result

2. INTEGER res_hi_ss(4): the hi end indices for the X, Y, Z, T axes of the result

3. INTEGER res_incr(4): the increment to be applied to the X, Y, Z, T axes of the result

Sample code:

CALL ef_get_res_subscripts(id,
res_lo_ss, res_hi_ss, res_incr) ... DO 400 i=res_lo_ss(X_AXIS),
res_hi_ss(X_AXIS) DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
... 300 CONTINUE 400 CONTINUE

Ch11 Sec6.2.17. ef_get_arg_info(id, iarg, arg_name, arg_title, arg_units)

Return strings describing argument: name, title, units.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarg: argument number

Output arguments:

1. CHARACTER*24 arg_name: the name of the argument

2. CHARACTER*128 arg_title: title associated with the argument

3. CHARACTER*32 arg_units: the argument's units.

Ch11 Sec6.2.18. ef_get_arg_string(id, iarg, text)

Return the string associated with an argument of type STRING_ARG. The maximum length for the string ist 160 characters.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarg: argument number

Output arguments:

1. CHARACTER*(*) text: the actual text string for the argument

Sample code:

 …

 CHARACTER arg_text*160

* *************************
* USER CONFIGURABLE PORTION
*
*

 INTEGER i,j,k,l
 INTEGER i1, j1, k1, l1

 CALL ef_get_arg_string(id, 1, arg_text)
 WRITE(6,49) arg_text
49 FORMAT ('The text is : ''',a,'''')

 …

Ch11 Sec6.2.19. ef_get_axis_info(id, iarg, axname, ax_units, backward, modulo, regular)

Return strings describing argument: name, title, units.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarg: argument number

Output arguments:

1. CHARACTER*16 ax_name(4): the name of the four axes

2. CHARACTER*16 ax_units(4): units of the four axes

3. LOGICAL backward(4): true if axis is backward axis

4. LOGICAL modulo(4): true if axis is modulo axis

5. LOGICAL regular(4): true if axis is regular axis

Ch11 Sec6.2.20. ef_get_axis_dates(id, iarg, taxis, numtimes, datebuf)

Returns the string date buffer associated with the time axis of an argument.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarg: argument number

3. REAL*8 taxis(numtimes): time axis coordinate values

4. INTEGER numtimes: number of time

Output arguments:

1. CHARACTER*20 datebuf(numtimes): the string-date buffer for each time.

Ch11 Sec6.2.21. ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

Return lo and hi indices and increments to be used in looping through the calculation of the result.. See the discussion under
 custom_axis (p. 260) if you call ef_get_arg_subscripts to generate a custom axis.

Input arguments:

1. INTEGER id: external function's ID number

Output arguments:

1. INTEGER arg_lo_ss(4,EF_MAX_ARGS): the lo end indices for the X, Y, Z, T axes of each argument

2. INTEGER arg_hi_ss(4,EF_MAX_ARGS): the hi end indices for the X, Y, Z, T axes of each argument

3. INTEGER arg_incr(4,EF_MAX_ARGS): the increment to be applied to the X, Y, Z, T axes of each argument

Sample code:

INTEGER i,j,k,l
INTEGER i1, j1, k1, l1
INTEGER i2, j2, k2, l2

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

i1 = arg_lo_ss(X_AXIS,ARG1)
i2 = arg_lo_ss(X_AXIS,ARG2)

DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
 …
 i1 = i1 + arg_incr(X_AXIS,ARG1)
 i2 = i2 + arg_incr(X_AXIS,ARG2)

400 CONTINUE

Ch11 Sec6.2.22. ef_get_arg_ss_extremes(id, num_args, ss_min, ss_max)

Return the maximum and minim index values for all the arguments. These define the domain of the data.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER num_args: number of arguments for which to return index extremes

Output arguments:

1. INTEGER ss_min(4,EF_MAX_ARGS): the minimum indices for the X, Y, Z, T axes of each argument

2. INTEGER ss_max(4,EF_MAX_ARGS): the maximum indices for the X, Y, Z, T axes of each argument

Example:

INTEGER id, num_args
INTEGER ss_min(4,EF_MAX_ARGS), ss_max(4,EF_MAX_ARGS)
num_args = 3
CALL ef_get_arg_ss_extremes(id, num_args, ss_min, ss_max)

Ch11 Sec6.2.23. ef_get_bad_flags(id, bad_flag, bad_flag_result)

Return the missing value flags for each argument and for the result.

Input arguments:

1. INTEGER id: external function's ID number

Output arguments:

1. REAL bad_flag(EF_MAX_ARGS): missing value flags for each argument

2. REAL bad_flag_result: missing value flag for the result

Sample code:

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

…

IF (arg_1(i1,j1,k1,l1) .EQ. bad_flag(ARG1)) THEN

 result(i,j,k,l) = bad_flag_result
ELSE
 ...

Ch11 Sec6.2.24. ef_get_coordinates(id, arg, axis, lo, hi, coords)

Return the "world coordinates" associated with a particular arg, axis and lo:hi range.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER axis: axis number

4. INTEGER lo: lo index of desired range

5. INTEGER hi: hi index of desired range

Output arguments:

1. REAL*8 coords(*): array of "world coordinate" values (NB_ these values are associated with index values lo:hi but are
returned as coords(1:hi-lo).)

Sample code: in the work_size subroutine, define twice as many elements as coordinates so as to have storage for REAL*8
numbers

*

 SUBROUTINE myfcn_work_size(id)
 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
 INTEGER id

* Set the work arrays, X/Y/Z/T dimensions

 INTEGER nxout, nx2
 INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
 arg_incr(4,1:EF_MAX_ARGS)

 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

 nxout = 1 + arg_hi_ss(X_AXIS,ARG4) - arg_lo_ss(X_AXIS,ARG4)
 nx2 = nxout* 2

* Define work array XAX

 CALL ef_set_work_array_dims (id, 1, 1, 1, 1, 1, nx2, 1, 1, 1)
 RETURN
 END

In the compute subroutine, dimension the REAL*8 coordinate array with half the wkr1hix dimension (wrk1lox:wrk1hix, etc are
defined by the work_size subroutine)

 SUBROUTINE myfcn_compute(id, arg_1, arg_2, result, xax)
…

 REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz,
 . Mem1lot:mem1hit)
 REAL result(memreslox:memreshix, memresloy:memreshiy,
 . memresloz:memreshiz, memreslot:memreshit)

 INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
 INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
 . Arg_incr(4,EF_MAX_ARGS)

C Dimension the work array: X dimension was defined twice as large
C as the # coordinates, for double precision work array.

 REAL*8 xax(wrk1lox:wrk1hix/2, wrk1loy:wrk1hiy,
 . wrk1loz:wrk1hiz, wrk1lot:wrk1hit)
…

 CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
 CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

 CALL ef_get_coordinates(id, ARG1, X_AXIS, arg_lo_ss(X_AXIS,

 . ARG1), arg_hi_ss(X_AXIS, ARG1), xax)

…

 dummy = 1
 DO 30 i = arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1)
 cstr(i) = 1.0 / cos(xax(dummy) * (1.0/radian))
 dummy = dummy + 1
30 CONTINUE

Ch11 Sec6.2.25. ef_get_box_size(id, arg, axis, lo, hi, size)

Return the box sizes (in "world coordinates") associated with a particular arg, axis and lo:hi range.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER axis: axis number

4. INTEGER lo: lo index of desired range

5. INTEGER hi: hi index of desired range

Output arguments:

1. REAL size(*): array of box size values (NB_ these values are associated with index values lo:hi but are returned as
coords(1:hi-lo).)

Sample code:

REAL tk_y(wrk1lox:wrk1hix, wrk1loy:wrk1hiy/2,
 . wrk1loz:wrk1hiz, wrk1lot:wrk1hit)

REAL tk_dx(wrk2lox:wrk2hix, wrk2loy:wrk2hiy,
 . wrk2loz:wrk2hiz, wrk2lot:wrk2hit)

INTEGER dummy

…

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
CALL ef_get_coordinates(id, ARG1, Y_AXIS, arg_lo_ss(Y_AXIS, ARG1),
. arg_hi_ss(Y_AXIS, ARG1), tk_y)
CALL ef_get_box_size(id, ARG1, X_AXIS, arg_lo_ss(X_AXIS, ARG1),
. arg_hi_ss(X_AXIS, ARG1), tk_dx)

…

dummy = 1
DO 20 i = arg_lo_ss(X_AXIS, ARG1), arg_hi_ss(X_AXIS, ARG1)
 dxt4r(i) = 1.0 / (4.0 * tk_dx(dummy) * radius/radian)
 dummy = dummy + 1
20 CONTINUE

Ch11 Sec6.2.26. ef_get_box_limits(id, arg, axis, lo, hi, lo_lims, hi_lims)

Return the box limits (in "world coordinates") associated with a particular arg, axis and lo:hi range.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER axis: axis number

4. INTEGER lo: lo index of desired range

5. INTEGER hi: hi index of desired range

Output arguments:

1. REAL lo_lims(*): array of box lower limit values (NB_ these values are associated with index values lo:hi but are
returned as coords(1:hi-lo).)

2. REAL hi_lims(*): array of box upper limit values (NB_ these values are associated with index values lo:hi but are
returned as coords(1:hi-lo).)

Ch11 Sec6.2.27. ef_get_one_val(id, arg, value)

Return the value of 1×1×1×1 variable.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

Output arguments:

1. REAL value : The value of the variable

Ch11 Sec6.2.28. ef_version_test (version)

Return the version number of the external functions code that is in place.

Output argument:

1. REAL version : The version number

Ch11 Sec6.2.29. ef_bail_out(id, text)

Bail out of an external function, returning to Ferret and issuing a message to the user.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER text: text string to output.

The bail-out message looks like this, where the text specified is on the second line:

Bailing out of external function "ffta":
 Time axis must be a regular axis
**ERROR: : error in external function

Part II: COMMANDS REFERENCE

Ref Sec1. ALIAS

An alias for DEFINE ALIAS (p. 292).

Ref Sec2. CANCEL

Cancels a program state or definition—generally paired with a SET or DEFINE
command. See commands SET (p. 337) and DEFINE (p. 292) for further
information.

Arguments:

The arguments, which are names of variables, data sets, or other definitions can be
specified using wildcards. The * wildcard matches any number of characters in the
name; the ? wildcard matches exactly one character.

Ref Sec2.1. CANCEL ALIAS

Cancels a user-defined command alias.

yes? CANCEL ALIAS ALIAS_NAME

The command UNALIAS is an alias for CANCEL ALIAS.

Ref Sec2.2. CANCEL AXIS

/MODULO/ALL

CANCEL AXIS forms the complement to DEFINE AXIS. It is also applicable to
"persistent" axes which are defined by netCDF files such as
climatological_axes.cdf -- axes which are not associated with any variables in the
netCDF file, itself, and are not automatically deleted when the data set is canceled.

yes? CANCEL AXIS AXIS_NAME

Attempts to CANCEL AXIS on a axis which is used by a variable in a currently
open data set will be rejected with a message indicating the reason.

Command qualifiers for CANCEL AXIS:

CANCEL AXIS/MODULO
Cancels the modulo nature of a user-defined axis.

yes? CANCEL AXIS/MODULO my_x_axis

or

yes? CANCEL AXIS/MODULO my_t*

CANCEL AXIS/ALL
Cancels all axes that have been defined by the user, and restores any coordinate
storage that was used to define irregular axes. It does not cancel axes defined when
a data set is opened.

Ref Sec2.3. CANCEL DATA_SET

/ALL /NOERROR

Removes the specified data set from the list of available sets.

yes? CANCEL DATA_SET dset1, dset2, ..., dsetn

 where each dset may be the name or number of a data set; or

yes? CANCEL DATA/ALL

(See also SET DATA_SET, p. 337, and SHOW DATA SET, p. 369.)

Command qualifiers for CANCEL DATA_SET:

CANCEL DATA/ALL

Eliminates all data sets from the list of accessible data sets.

CANCEL DATA/NOERROR

Suppresses the error message otherwise generated when a data set that was never
set is canceled. Useful in GO scripts for closing data sets that may have been
opened in previous usage of the script.

Note that if a grid or axis from a netCDF file is used in the definition of a LET-
defined variable (e.g. LET my_X = X[g=sst[D=coads_climatology]]) that variable
definition will be invalidated when the data set is canceled (CANCEL DATA
coads_climtology, in the preceding example). There is a single exception to this
behavior: netCDF files such as climtological_axes.cdf, which define grids or axes
that are not actually used by any variables. These grids and axes will remain
defined even after the data set, itself, has been canceled. They may be deleted with
explicit use of CANCEL GRID or CANCEL AXIS.

Ref Sec2.4. CANCEL EXPRESSION

Un-specifies the current context expression. Ferret's "action" commands can be
issued without an argument (e.g., yes? PLOT), in which case Ferret uses the

current context expression. This expression is either the argument of the most
recent action command, or an expression set explicitly with SET EXPRESSION.

yes? CANCEL EXPRESSION

The qualifier /ALL can be used with this command, but it exists for compatibility
purposes only and has no effect.

Ref Sec2.5. CANCEL GRID

 CANCEL GRID forms the complement to DEFINE GRID It is also applicable to
"persistent" grids which are defined by netCDF files such as
climatological_axes.cdf -- grids which are not associated with any variables in the
netCDF file, itself, and are not automatically deleted when the data set is canceled.

Attempts to CANCEL GRID on a grid or axis which is used by a variable in a
currently open data set will be rejected with a message indicating the reason.

Ref Sec2.6. CANCEL LIST

/ALL /APPEND /FILE /FORMAT /HEADING /PRECISION

Toggles the effects of the SET LIST command. See command SET LIST (p. 346).

yes? CANCEL LIST[/qualifiers]

Command qualifiers for: CANCEL LIST

CANCEL LIST/ALL

Restores all aspects of the LIST command to their default behavior.

CANCEL LIST/APPEND

Resets the listed output to NOT append to existing file.

CANCEL LIST/FILE

Resets the listed output to automatic file naming.

CANCEL LIST/FORMAT

Resets the listed output to its default formatting.

CANCEL LIST/HEAD

Instructs listed output to omit the descriptive data header.

CANCEL LIST/PRECISION

Resets the precision of listed data to 4 significant digits.

Ref Sec2.7. CANCEL MEMORY

/ALL /PERMANENT /TEMPORARY

Clears data currently cached in memory.

yes? CANCEL MEMORY[/qualifier]

Use this command to save memory space—by clearing data as soon as it is no
longer needed virtual memory requirements can be reduced. This is especially
useful for efficient batch processing. Default is CANCEL
MEMORY/TEMPORARY.

Example:

 To produce an animation using minimal virtual memory try:

 yes? REPEAT/T=lo:hi:delta GO min_mem_movie

 Where the file min_mem_movie.jnl contains

 CONTOUR/FRAME temp[Z=0] ! contour plot

 CANCEL MEMORY/ALL ! clear memory for next time
step

Command qualifiers for CANCEL MEMORY:

CANCEL MEMORY/ALL

Clears all variables stored in memory.

CANCEL MEMORY/PERMANENT

Clears all "permanent" variables stored in memory (i.e., variables loaded into
memory with LOAD/PERMANENT).

CANCEL MEMORY/TEMPORARY (default)

Clears all non-permanent variables stored in memory.

Ref Sec2.8. CANCEL MODE

Sets the state of a mode to "canceled".

yes? CANCEL MODE mode_name

(See command SET MODE, p. 349, for descriptions of modes.)

Ref Sec2.9. CANCEL MOVIE

This command is unnecessary in Ferret version 3.1 and later; it is provided for
compatibility with older versions of Ferret. It restores the default movie file name
(ferret.mgm) but is not needed to conclude capturing graphics to a movie file.

yes? CANCEL MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility
purposes only and has no effect.

Ref Sec2.10. CANCEL SYMBOL

/ALL

Deletes a user-defined symbol (string variable) definition.

yes? CANCEL STRING[/qualifier] [symbol_name]

Command qualifiers for CANCEL SYMBOL:

CANCEL SYMBOL/ALL

Deletes all user-defined symbol definitions.

Examples:

yes? CANCEL SYMBOL my_x_label !eliminate my_x_label from the
definitions
yes? CANCEL SYMBOL *x_label !remove all strings ending in
x_label
yes? CANCEL SYMBOL/ALL !remove all user-defined symbols.

Ref Sec2.11. CANCEL REGION

/I/J/K/L /X/Y/Z/T /ALL

Cancels part or all of the current or named region.

yes? CANCEL REGION[/qualifier] [region_name]

Examples:

yes? CANCEL REGION !clear the current region

yes? CANCEL REGION/T !eliminate T from the current
context

yes? CANCEL REGION reg1 !clear the region named "reg1"

Command qualifiers for CANCEL REGION:

CANCEL REGION/I /J /K /L /X /Y /Z /T

Eliminates I, J, K, L, X, Y, Z, or T axis information from current context or named
region.

CANCEL REGION/ALL

Eliminates ALL stored region information (rarely used).

Ref Sec2.12. CANCEL VARIABLE

/ALL /DATASET

Deletes a user-defined variable definition.

yes? CANCEL VARIABLE[/qualifier] [var_name]

Command qualifiers for CANCEL VARIABLE:

CANCEL VARIABLE/ALL

Deletes all user-defined variable definitions.

Examples:

yes? CANCEL VARIABLE my_sst !eliminate my_sst from the
definitions
yes? CANCEL VARIABLE *wind !delete all variables ending in wind
yes? CANCEL VARIABLE tau? !delete variables named tau plus one
character
yes? CANCEL VARIABLE/ALL !delete all user-defined defined
variables

CANCEL VARIABLE/DATASET
Deletes user define variables associated with the named dataset, which were
defined by a DEFINE VARIABLE/DATASET command.

Ref Sec2.13. CANCEL VIEWPORT

Cancels a defined viewport or cancels use of viewports.

yes? CANCEL VIEWPORT view_name !un-define view_name

yes? CANCEL VIEWPORT !return to full window
output

Ref Sec2.14. CANCEL WINDOW

/ALL

Removes graphics window(s) from the screen.

yes? CANCEL WINDOW n !or

yes? CANCEL WINDOW/ALL

Command qualifiers for CANCEL WINDOW:

CANCEL WINDOW/ALL

Removes all graphics windows.

Ref Sec3. CONTOUR

/I/J/K/L /X/Y/Z/T /D /FILL /FRAME /KEY /LEVELS /LINE /NOAXIS /NOKEY
/NOLABEL /OVERLAY /PALETTE /PATTERN /SIZE /SPACING /SIGDIG
/PEN /SET_UP /TITLE /COLOR /TRANSPOSE /HLIMITS /VLIMITS /HLOG
/VLOG /AXES

Produces a contour plot.

yes? CONTOUR[/qualifiers] [expression]

In a curvilinear coordinate system (map projections)

yes? CONTOUR[/qualifiers] expression, xcoords, ycoords (see p.
187)

Example:

yes? CONTOUR var1 !produce a contour plot of variable
var1

yes? CONTOUR var1, xcoords, ycoords

 !produce a contour plot of variable var1

 ! using curvilinear coordinates

Parameters

Expressions may be any valid expression. See the chapter "Variables and
Expressions", section "Expressions" (p. 61), for a definition of valid expressions.
The expression will be inferred from the current context if omitted from the
command line.

Command qualifiers for CONTOUR:

CONTOUR/I/J/K/L /X/Y/Z/T /OVERLAY /SET_UP /FRAME /D
/TRANPOSE /FILL /LINE /NOLABEL /LEVELS /KEY /NOKEY /PALETTE
/HLIMITS /VLIMITS /TITLE /COLOR /NOAXES /PATTERN /SIZE
/SPACING /SIGDIG /PEN /AXES

/J=/K=/L=/X=/Y=/Z=/T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,
Z, or T) to be used when evaluating the expression being plotted.

CONTOUR/D=

Specifies the default data set to use when evaluating the expression being
contoured.

CONTOUR/FILL (alias FILL)

Creates a color filled contour image.

CONTOUR/FRAME

Causes the graphic image produced by the command to be captured as an animation
frame in the file specified by SET MOVIE. In general the FRAME command (p.
310) is more flexible and we recommend its use rather than this qualifier.

CONTOUR/FILL/KEY

Displays a color key for the palette used in a color-filled contour plot. Only valid in

conjunction with /FILL (default with CONTOUR/FILL or alias FILL). To control
the color key position and labeling, see the command SHAKEY in the appendix,
"Ferret Enhancements to PPLUS" (p. 481).

CONTOUR/FILL/KEY=CONTINUOUS

Chooses a continous color key for the palette used in a color-filled contour plot,
without lines separating the colors. This option is particularly good for fill plots
having many levels. Only valid in conjunction with /FILL

CONTOUR/LEVELS

Specifies the contour levels or how the levels will be determined. If the /LEVELS
qualifier is omitted Ferret automatically selects reasonable contour levels.

See the chapter "Customizing Plots", section "Contouring" (p. 181) for examples
and more documentation on /LEVELS and color_thickness indices. See also the
demonstration "custom_contour_demo.jnl".

CONTOUR/LINE

Overlays contour lines on a color-filled plot. Valid only with /FILL (or as a
qualifier to alias FILL). When /LINE is specified the color key, by default, is
omitted. Use FILL/LINE/KEY to obtain both contour lines and a color key.

CONTOUR/NOKEY

Turns off display of a color key for the palette used in a color-filled contour plot.
Only valid in conjunction with /FILL (or with alias FILL).

CONTOUR/NOAXIS

Suppresses all axis lines, tics and labeling so that no box appears surrounding the
contour plot. This is especially useful for map projection plots.

CONTOUR/NOLABELS

Suppresses all plot labels.

CONTOUR/OVERLAY

Causes the indicated expression to be overlaid on the existing plot.

Note (CONTOUR/OVERLAY with time axes):

A restriction in PPLUS requires that if time is an axis of the contour plot, the
overlaid variable must share the same time axis encoding as the base plot variable.
If this condition is not met, you may find that the overlaid contour fails to be
drawn. The solution is to use the Ferret regridding capability to regrid the base plot
variable and the overlaid plot variable onto the same time axis. See the section on
overlaying with a time axis (p. 160).

CONTOUR/PALETTE=

Specifies a color palette (otherwise, the current default palette is used). Valid only
with CONTOUR/FILL (or as a qualifier to the alias FILL). The file suffix *.spk is
not necessary when specifying a palette. Try the Unix command % Fpalette
'*' to see available palettes. See command PALETTE (p. 322) for more
information.

Example:

yes? CONTOUR/FILL/PALETTE=land_sea world_relief

The /PALETTE qualifier changes the current palette for the duration of the plotting
command and then restores the previous palette. This behavior is not immediately
compatible with the /SET_UP qualifier. See the PALETTE (p. 322) command for
further discussion.

CONTOUR/PATTERN=

Specifies a pattern file (otherwise, the current default pattern specification is used).
Valid only with CONTOUR/FILL (or as a qualifier to the alias FILL). The file
suffix *.pat is not necessary when specifying a pattern. Try the Unix command %
Fpattern '*' to see available patterns. See command PATTERN (p. 323) for more
information.

CONTOUR/COLOR=

Sets line color (replaces the /PEN qualifier). The available color names are Black,
Red, Green, Blue, LightBlue, and , Purple, and White (not case sensitive),
corresponding to the /PEN values 1-6, respectively. (/COLOR also accepts
numerical values.).

Example:

yes? CONTOUR/COLOR=red sst

CONTOUR/PEN=

Sets line style for contour lines (same arguments as PLOT/LINE=). Argument can
be an integer between 1 and 18; run GO line_samples to see the styles for

color devices.

Example:

yes? CONTOUR/PEN=2 sst

CONTOUR/SIZE=

Controls the size of characters in the contour labels, using PLOT+ definition of
"inches" .Default is 0.8' See example under CONTOUR/SPACING below.

CONTOUR/SIGDIG=

Sets the number of significant digits for contour labels. Default is 2. See example
under CONTOUR/SPACING below.

CONTOUR/SPACING=

Sets spacing for contour lines, using PLOT+ definition of "inches". The default
spacing is 5.0. (See the CONSET command in the on-line PLOT+ Users Guide)

Example o f CONTOUR/SIZE/SIGDIG/SPACING

yes? LET my_field = SIN(X[x=1:6:.1])*COS(Y[y=1:6:0.1])
yes? CONTOUR/SIGDIG=1/SIZE=0.15/SPACING=3 my_field

Specifies contour labels with a single significant digit using characters of height
0.15 "inches" at a nominal spacing of 3 "inches", consistent with the PLOT+ usage
of "inches". (These are the same units as in, say, "ppl axlen 8,6", to specify plot
axes of lengths 8 and 6 inches for horizontal and vertical axes, respectively.) Note

that the PLOT+ CONPRE and CONPST commands are also useful (see p. 447),
giving control over the text font and color used in the labels and adding units to the
labels. For example, the commands

yes? PPL CONPRE @C002@CR
yes? PPL CONPST cm/sec

will transform the labels in the above CONTOUR example to red (002), Complex
Roman font with a units label of "cm/sec".

CONTOUR/SET_UP

Performs all the internal preparations required by program Ferret for contouring but
does not actually render output. The command PPL can then be used to make
changes to the plot prior to producing output with the PPL CONTOUR command.
This permits plot customizations that are not possible with Ferret command
qualifiers. See the chapter "Customizing Plots", section "Contouring" (p. 181).

CONTOUR/TITLE=

Allows user to specify a plot title (enclosed in quotation marks). Without this
qualifier Ferret selects a title based on information about the expression. To include
font change and color_thickness specifications (e.g., @TI@C002) in the title string,
it is necessary either to CANCEL MODE ASCII or to include a leading ESC
(escape) character.

CONTOUR/TRANSPOSE

Causes the horizontal and vertical axes to be interchanged. By default the X and T
axes of the data are drawn horizontally on the plot and the Y and Z axes of the data
are drawn vertically. For Y-Z plots the Z data axis is vertical by default.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in
order to achieve a horizontal T axis. See /HLIMITS (below) for further details. Use
/TRANSPOSE manually to reverse this effect.

CONTOUR/HLIMITS=

Specifies axis range and tic interval for the horizontal axis. Without this qualifier,
Ferret selects reasonable values.

yes? CONTOUR/HLIMITS=lo_val:hi_val[:increment] [expression]

The optional "increment" parameter determines tic mark spacing on the axis. If the
increment is negative, the axis will be reversed.

The /HLIMITS and /VLIMITS qualifiers will retain their "horizontal" and
"vertical" interpretations in the presence of the /TRANSPOSE qualifier. Thus, the
addition of /TRANSPOSE to a plotting command mandates the interchange of "H"
and "V" on the limits qualifiers.

CONTOUR/VLIMITS=

Specifies the axis range and tic interval for the vertical axis. See /HLIMITS
(above)

CONTOUR/XLIMITS=/YLIMITS=

Note: XLIMITS and YLIMITS have been denigrated. Please use HLIMITS and
VLIMITS instead.

CONTOUR/AXES[=top,bottom,left,right]

Turns plotting of individual axes off and on. This replaces the use of the "PPL
AXSET" command. The syntax is

 yes? CONTOUR/AXES[=top,bottom,left,right] var

where the arguments are 1 to turn the axis on and 0 to turn it off. For example:

yes? CONTOUR/AXES=0,1,1,0 sst ! Draws the bottom and left
axes only

Note that contour plots with log axes can be drawn as explained in the FAQ, How
can I make a 2D log (or log-log) plot?

Ref Sec4. DEFINE

Defines a new alias, region, grid, axis, variable, or viewport.

Ref Sec4.1. DEFINE ALIAS

Defines an alias for a command. "ALIAS" is an alias for DEFINE ALIAS.

yes? DEFINE ALIAS NAME COMMAND

Example:

yes? DEFINE ALIAS SDF SHOW DATA/FULL

Ref Sec4.2. DEFINE AXIS

/X/Y/Z/T /DEPTH /FILE /FROM_DATA /MODULO /NAME /NPOINTS /T0

http://ferret.pmel.noaa.gov/Ferret/FAQ/custom_plots/2D_log_plot.html
http://ferret.pmel.noaa.gov/Ferret/FAQ/custom_plots/2D_log_plot.html

/UNITS /EDGES /CALENDAR

Defines an axis (axis name up to 16 characters).

yes? DEFINE AXIS[/qualifiers] axis_name
or
yes? DEFINE AXIS[/qualifiers] axis_name = expr

Example:

yes? DEFINE AXIS/X=140E:140W:.2 AX140
or
yes? DEFINE AXIS/X myaxis = {1, 5, 15, 35}

Command qualifiers for DEFINE AXIS:

DEFINE AXIS/X=/Y=/Z=/T=

Specifies the limits and point spacing of an axis.

yes? DEFINE AXIS/X=lo:hi:delta axis_name

The limits may be in longitude, latitude, or date format (for X, Y, or T axis,
respectively) or may be simple numbers. No units are assumed unless units are
given explicitly with the /UNITS qualifier.

Use /UNITS=degrees to obtain latitude or longitude axes. The X or Y qualifier
determines which orientation "degrees" refers to.

For T axis, the limits may be dates (dd-mmm-yyyy:hh:mm:ss) or may be time
steps. The delta increment is regarded as hours unless the /UNITS qualifier
specifies otherwise.

If the time limits are given as dates then this axis produces date-formatted output
(unless CANCEL MODE CALENDAR is issued). If the time limits are given as

time steps then all instances of this axis are labeled with time step values in the
units specified with the /UNITS qualifier.

Examples (evenly-spaced axes):

yes? DEFINE AXIS/X=140E:140W:.2 ax140

yes? DEFINE AXIS/Y=15S:25N:.5 axynew

yes? DEFINE AXIS/Z=0:5000:20/UNITS=CM/DEPTH axzcm

yes? DEFINE AXIS/T="7-NOV-1953":"23-AUG-1988:11:00":24 axtlife

yes? DEFINE AXIS/T=25:125:5/UNITS=minutes axt5min

DEFINE AXIS/CALENDAR=

Allows for non-Gregorian calendar axes. The calendars allowed are

calendar name number of days/year notes

GREGORIAN or
STANDARD

365.2425 default calendar

JULIAN 365.25 with leap years

NOLEAP 365 no leap years

360_DAY 360 each month is 30 days

The calendar definitions conform to the NetCDF conventions document for

calendars. See http://www.cgd.ucar.edu/cms/eaton/netcdf/merge_current.html#cal
(however the nonstandard calendars described there are not implemented at this
time.) These calendar definitions are compatible with the Udunits standard (see
http://www.unidata.ucar.edu/packages/udunits/udunits.dat) which has slightly
different naming conventions.

The NetCDF conventions recommend that the calendar be specified by the attribute
time:calendar when there is a non-Gregorian calendar associated with a data set, i.e.

time:calendar=noleap

Ferret reads this attribute from a NetCDF file and assigns the designated calendar
to the time axis.

Example:

Define a calendar axis and regrid an existing variable to this axis:

yes? DEFINE AXIS/CALENDAR=JULIAN/T="15-JAN-1982":"15-DEC-
1985":30/UNITS=days tmodel yes? LET twind = uwnd[GT=tmodel@NRST]

When regridding from one calendar axis to another the length of a year is assumed
to be constant, therefore the regridding calculates a scale factor based on the length
of a second in each calendar, computed from the number of seconds per year for the
calendars.

DEFINE AXIS/DEPTH

Specifies the Z axis to be a depth, positive downward, axis. A depth axis is
indicated by a "(-)" following its title in a SHOW GRID or SHOW AXIS
command. Depth axes are notated by "UD" (up-down) in the grid definition file,
while normal vertical axes (such as an elevation axis in meteorology) are notated
by "DU" (down-up).

Example:

http://www.cgd.ucar.edu/cms/eaton/netcdf/merge_current.html#cal
http://www.unidata.ucar.edu/packages/udunits/udunits.dat

yes? DEFINE AXIS/Z=0:5000:20/DEPTH/UNITS=CM AXZDCM

DEFINE AXIS/EDGES

The /EDGES qualifier indicates that the coordinates provided refer to the edges or
boundaries between grid cells. When /EDGES is used, the coordinates of the grid
points will be computed at the midpoints between the indicated edges. When
/EDGES is used in conjunction with /FROM_DATA the number of grid points
created will be equal to the number of coordinates minus one, since the list of edges
includes both the upper and lower edge of the axis. An example of defining an axis
by its edges is

yes? DEFINE AXIS/Z=0:5010:20/EDGES/DEPTH/UNITS=CM AXZDCM

A class of especially important uses for the /EDGES qualifier is to create custom
calendar axes. This example creates a true monthly axis, with axis cells beginning
on the first of each month:

yes? let month = MOD(l-1,12)+1
yes? let add_year = INT((l-1)/12)
yes? let tstep = DAYS1900(1980+add_year,month,1)
yes? define axis/T/units=days/t0=1-jan-1900/edges/NAME=truemonth
 tstep[l=1:`20*12+1`]

The following example shows the computation of a custom climatological average.
Given, for example, a multi-year time series of a daily measured variable, the
climatological average of the variable for two unequal time periods could be
computed by creating an axis with two points, using the FROM_DATA qualifier.
 The grid cells for these two points would extend from 15-Mar to 27-May (about
73 days), and from 27-May to 15-Mar (about 292 days). The actual dates on
which the 2 points are located would be the midpoints of these two intervals, on 20-
Apr and 20-Oct.

yes? DEFINE AXIS/t=1-jan-0001:1-jan-0002:1/unit=days/t0=1-jan-

0000 tencoding
yes? LET tstep = t[gt=tencoding]
yes? LET start_date = tstep[t=15-mar-0001]
yes? LET end_date = tstep[t=27-may-0001]
yes? DEFINE AXIS/T/UNITS=days/T0=1-jan-0000/EDGEs/MODULO
tax={`start_date,p=7`,`end_date,p=7`,`start_date+365.2425,p=7`}

yes? DEFINE GRID/T=tax taxgrid

yes? SHOW/L=1:2 grid taxgrid

 GRID TAXGRID
 name axis # pts start end
 normal X
 normal Y
 normal Z
 TAX TIME 2mi 20-APR 12:00 20-OCT
 02:54

 L T BOX_SIZE TIME_STEP
(DAYS)
 1> 20-APR 12:00:00 73 475.5
 2> 20-OCT 02:54:35 292.2425 658.1212

DEFINE AXIS/FILE=

Reads a gridfile for grid and axis definitions. The gridfile specified should be in the
standard TMAP gridfile format. There are several documents in $FER_DIR/doc
regarding gridfiles and TMAP format (e.g., "about_grid_files.txt").

yes? DEFINE AXIS/FILE=grid_file.grd

DEFINE AXIS/FROM_DATA

Used only in conjunction with /NAME to define an axis from any expression that
Ferret can evaluate.

yes? DEFINE AXIS/FROM_DATA/NAME=axis_name expr

(This is a mechanism to convert dependent variables into independent axis data.)

When defining an axis from a LET-defined variable or expression the condensed
syntax (e.g.)

yes? DEFINE AXIS/X axname=expression

 replaces the older (still supported) syntax

yes? DEFINE AXIS/X/NAME=axname/FROM_DATA expression

Note that the values from which the axis is to be created must be in strictly
increasing order. If the coordinates are repeated, Ferret will "micro-adjust" the
values by adding multiples of 1 millionth of the axis range to the repeated values.
Ferret will issue an informative message if it is micro-adjusting an axis.

Example (unevenly-spaced axis):

yes? DEFINE AXIS/X my_xaxis=pos[D=2]^0.5

defines each coordinate of the axis "my_xaxis" as the square root of variable "pos"
from data set 2.

DEFINE AXIS/MODULO

Specifies that the axis being defined be treated as modulo; that is, the first point
will wrap around and follow the last point (e.g., a longitude axis). See the sections
on modulo axes and subspan modulo axes for more information (p. 140 ff).

DEFINE AXIS/NAME=

Used only in conjunction with /FROM_DATA to specify the name of the axis to be
defined.

yes? DEFINE AXIS/FROM_DATA/NAME=axis_name expr

DEFINE AXIS/NPOINTS=

Specifies the number of coordinate points on the axis being defined.

yes? DEFINE AXIS/Z=lo:hi/NPOINTS=n ax_name

This qualifier can be used instead of specifying Z=lo:hi:delta.

DEFINE AXIS/T0=

Specifies the date and time associated with the time step value 0.0

Example:

DEFINE AXIS/T="1-NOV-1980":"15-AUG-1988":72/T0="1-JAN-1800" TNEW

Note: The /T0 qualifier is optional; the underlying time step values are transparent
to Ferret users for most purposes. The default value is 15-JAN-1901.

DEFINE AXIS/UNITS=

Specifies the units of the axis being defined.

 A DEFINE AXIS command such as DEFINE AXIS/X=130E:80W:2 xax infers
from the formatting of the longitude coordinates the implied qualifier
"/UNITS=degrees". Similar for latitudes.

Example:

yes? DEFINE AXIS/Z=0:2000:100/UNITS=CM ZCM

Any string (up to 10 characters) is acceptable as a units string, but only the
following units are recognized and used when computing axis transformations:

cm (or centimeter) mm (or millimeter) day

km (or kilometer) mb (or millibar) mon

m (or meter, or metre) level yr (or year) (365 days)

deg (or lat or lon) layer gregorian_year (365.2425 days)

ft (or feet or foot) sec year360 (360 days)

in min year366 (366 days)

mile hour M2 cycles

dbar mbar

NOTES:

1) As of Ferret version 5.1 the definition of the unit "month" has been redefined to
be exactly 1/12 of a climatological year. This change applies both to files that use

"units=months" and to the DEFINE VARIABLE command. The climatological
month is the length of an average month in the Gregorian calendar, including leap
years -- 1/12 or 365.2485 days. Thus the command

yes? DEFINE AXIS/T0=1-JAN-0000/T=0:12:1/EDGES/units=months/MODULO
month_reg

defines a climatological monthly axis which does not "drift" over time due to leap
years. This non-drift behavior can be observed using a commands like

yes? SHOW AXIS /l=1:12001:1200 month_reg

which will show every 100th January over 1000 years.

2) The units dbar and mbar are recognized by Ferret, however, no automatic
conversion is attempted between these and any other units.

TIP:

Ferret will convert recognized units of length to meters and recognized units of
time to seconds during transformations such as integration (@IIN and @DIN) and
differentiation (@DDB, @DDC, @DDF) (see "General Information about
transformations," p. 90). Using this characteristic it is always possible to query
Ferret about the conversion factors from meters or seconds by integrating a grid
cell of width one on an axis of the units in question. For example:

yes? ! query conversion factor to meters
yes? define axis/x=0:1:1/edges/units=feet xtest ! 1 point, cell
width=1 unit
yes? let vx = 0*X[gx=xtest]+1 ! vx = 1
yes? list/prec=7 vx[x=@din]
 0*X[GX=XTEST]+1
 X (FEET): 0 to 1 (integrated)
 0.3048000

yes? ! query conversion factor to seconds
yes? define axis/t=0:1:1/edges/units=month ttest ! 1 point, cell
width=1 unit
*** NOTE: /UNIT=MONTHS is ambiguous ... using 1/12 of 365 days.
yes? let vt = 0*T[gt=ttest]+1 ! vt = 1

yes? list/prec=7 vt[t=@din]
 0*T[GT=TTEST]+1
 T (MONTH): 0 to 1 (integrated)
 2628000.

Note on DEFINE AXIS:

Axes which are "in use", because they are used by currently open data sets may
now be redefined using DEFINE AXIS.

 Previously attempting to redefine an in-use axis generated an error. This feature
is especially useful to correct the interpretation of erroneous files, or files which
exhibit minor incompatibilities with Ferret. Use this feature with caution as it can
be used to "fool" Ferret into an incorrect interpretation of a data file.

Ref Sec4.3. DEFINE GRID

/X/Y/Z/T /FILE /LIKE

Defines a grid (name may be up to 16 characters).

yes? DEFINE GRID[/qualifiers] grid_name

Example:

yes? DEFINE GRID/LIKE=temp/T=my_t_axis my_grid

Command qualifiers for DEFINE GRID:

DEFINE GRID/X=/Y=/Z=/T=

Specifies what particular axis is to be the X, Y, Z, or T axis for this grid.

yes? DEFINE GRID/X=axname grid_name

The name axname may be the name of an axis, the name of a grid that uses the axis
desired, or the name of a variable for which the defining grid uses the axis desired.

For example,

yes? DEFINE GRID/X=U gx

will create a grid named gx which is one-dimensional—normal to Y, Z, and T.

Note: Many axes possess an orientation implicit in their units, especially latitude,
longitude, and time axes. The effects of using an axis in an inappropriate
orientation, such as /X=time_axis, are unpredictable.

DEFINE GRID/FILE=

Reads a gridfile for GRID and AXIS definitions. The gridfile specified should be in
the standard TMAP gridfile format. There are several documents in $FER_DIR/doc
regarding gridfiles and TMAP format (e.g., about_grid_files.txt).

Example:

yes? DEFINE GRID/FILE=new_grids.grd

DEFINE GRID/LIKE=

Specifies a particular grid (by name or by reference to a variable defined on that
grid) to use as a template to create a new grid.

yes? DEFINE GRID/LIKE=grid_or_variable_name grid_name

All axes of the grid being created will be identical to the axes of the "LIKE=" grid
except those explicitly changed with the /X, /Y, /Z, or /T qualifiers. The argument
may be an expression.

Example:

yes? DEFINE GRID/LIKE=temp[D=2]/Z=ZAX gnew !temp from data
set 2

Examples: DEFINE GRID

1) yes? DEFINE AXIS/T="1-JAN-1980":"31-DEC-1983":24
axday
yes? DEFINE GRID/LIKE=temp/T=axday gday
Define grid gday to be like the defining grid for temp but with a 4-year, daily-
interval time axis.

2) yes? DEFINE GRID/LIKE=temp[D=ba022]/T=sst[D=nmc]
gnmc3d
Define grid gnmc3d like temp from data set ba022 but with the same time axis as
sst from data set nmc.

3) yes? DEFINE AXIS/X=140E:140W:.2 xnew
yes? DEFINE AXIS/Y=5S:5N:.2 ynew
yes? DEFINE AXIS/T="15-FEB-1982":"15-FEB-1984":48 tnew
yes? DEFINE GRID/X=xnew/Y=ynew/T=tnew gnew
Define grid gnew from new axes. The grid, gnew, will be normal (perpendicular) to
Z.

Ref Sec4.4. DEFINE REGION

/I/J/K/L /X/Y/Z/T /DI/DJ/DK/DL /DX/DY/DZ/DT /DEFAULT

 Defines or redefines a named region_name (first 4 characters are recognized).

yes? DEFINE REGION[/qualifiers] region_name

If the qualifier /DEFAULT is not given only those axes explicitly named will be
stored. If the qualifier /DEFAULT is given all axes will be stored.

Command qualifiers for DEFINE REGION:

DEFINE REGION/I=/J=/K=/L=/X=/Y=/Z=/T=

Specifies region limits (=lo:hi or =val).

DEFINE REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=

Specifies a change in region relative to the current settings (=lo:hi or =val). See
examples below.

DEFINE REGION/DEFAULT

Saves all axes and transformations, not just those explicitly given. Commonly, a
GO script begins with "DEFINE REGION/DEFAULT save" and ends with "SET
REGION save".

Examples: DEFINE REGION

1) yes? DEFINE REGION/DEFAULT save
Stores the current default region under the name "save". The region may be
restored at a later time by the command yes? SET REGION save.

2) yes? DEFINE REGION/X xonly
Stores the current default X axis limits, only, as region xonly.

3) yes? DEFINE REGION/DX=-5 xonly
Stores the current default X axis limits minus 5 as region xonly.

4) yes? DEFINE REGION/Y=20S:20N/Z yanz
Stores the given limits from the Y axis and the default Z axis limits.

5) yes? DEFINE REGION/DEFAULT/L=5 l5
Stores the current default region with the modification that L, the time step, is
stored as 5.

6) yes? DEFINE REGION/DL=-1:+1 lp2
Stores an L region beginning 1 time step earlier and ending 1 time step later than
the current default region as region lp2.

Ref Sec4.5. DEFINE SYMBOL

Allows the user to define a string variable. Symbol names must begin with a letter
and contain only letters, digits, underscores, and dollar signs.

yes? DEFINE symbol symbol_name=string

Example:

yes? DEFINE symbol my_x_label = sample number

Ref Sec4.6. DEFINE VARIABLE

/D /QUIET /TITLE /UNITS /BAD=

Allows the user to define a variable from a valid algebraic expression. Note: LET
is an alias for DEFINE VARIABLE.

yes? DEFINE VARIABLE[/qualifiers] name=expression

Example:

yes? LET SPEED = U^2 + V^2

Parameters

The expression may be any valid expression. See the chapter "Variables and
Expressions", section "Expressions" (p. 61) for a definition of valid expressions.

The name specified with DEFINE VARIABLE can be 1 to 64 characters in
length—letters, digits, $ and _, beginning with a letter. Pseudo-variable names and
operators are reserved and cannot be used (I, J, EQ, SIN,...). See the chapter
"Variables and Expressions" (p. 55) for recognized pseudo-variables, operators, and
functions.

If the name defined is the same as a variable name in a data set, the user-defined
variable is used instead of the file variable. (Look for LET/D=d_set to control this
behavior in future Ferret versions.)

Examples:

1) yes? DEFINE VARIABLE sum = a+b
 or equivalently
yes? LET sum = a+b

2) yes? DEFINE VARIABLE/TITLE="velocity"/UNIT="m/sec"
pos[T=@DDC]*0.01
Defines velocity in m/sec from position, pos, in cm.

Command qualifiers for DEFINE VARIABLE:

DEFINE VARIABLE/BAD=value

Allows user to control the missing value of user-defined variables The specified
value will be used whenever the variable is LISTed (or SAVEd) to a file. Note that
the missing value will revert to its default (-1E34) when this variable is combined
in further calculations.

Example:

yes? let/bad=3 gap_3 = I[I=1:5]
yes? list gap_3
 I[I=1:5]
1 / 1: 1.000
2 / 2: 2.000
3 / 3:
4 / 4: 4.000
5 / 5: 5.000
yes? let new_var = gap_3 + 5
yes? list new_var
 GAP_3 + 5
1 / 1: 6.00
2 / 2: 7.00
3 / 3:
4 / 4: 9.00
5 / 5: 10.00
yes? list/form=(1PG15.3) new_var
 GAP_3 + 5
 X: 0.5 to 5.5
 6.00
 7.00
 -1.000E+34
 9.00
 10.0

DEFINE VARIABLE/D=dataset

Restricts the scope of the variable name to the named data set. See further
discussion in the chapter "Variables and Expressions", section "Defining New
Variables" (p. 115).

The qualifier "DATASET=" (LET/DATASET=...) allows you detailed control
over the multiple use of the same name.

If the name or number of a data set is supplied then the /dataset qualifier
indicates that this variable name is to be defined only in the specified data set. For
example

yes? LET/dataset=coads_climatology V_geostrophic =
SLP[X=@DDC]/(F*RHO)

Defines V_geostrophic only in data set coads_climatology. In other data sets the
name V_geostrophic may refer to file variables or it may be given different
definitions or it may be undefined. The data set may be specified either by name as
in this example or by number as shown by SHOW DATA. Note that variables
defined using LET/dataset=[name_or_number] will be shown in the SHOW DATA
output for that data set as well as in SHOW VARIABLES.

If the /dataset qualifier is applied without specifying a data set name then the
interpretation is different. In this case the named variable becomes a default
definition -- one which applies only if a data-set specific variable of the same name
does not exist. For example, if the command

yes? LET/DATASET sst = temp[Z=0]

is issued then sst[D=levitus_climatology] will evaluate to
temp[D=levitus_climatology,Z=0] because the variable sst does not exist in
levitus_climatology, but sst[D=coads_climatology] will refer to the file variable
name sst within the coads_climatology data set.

LET/D is especially useful for editing data sets because it gives a ready way to
distinguish between the pre-edit and post-edit versions of the variable. In this
example we edit the data set etopo60, replacing a small rectangle in the Pacific
Ocean.

Example:

! Do not use memory-cached data when editing.
! Always reread the most recent version from the file.

yes? SET MODE STUPID

! Save an exact copy of the original data for editing.
! We will call our edited file "new_etopo.cdf"
yes? SET DATA etopo60
yes? LET/D=etopo60 depth = rose
yes? SET VARIABLE/TITLE="edited etopo depth"/UNITS=meters depth

yes? SAVE/FILE=new_etopo.cdf depth
yes? USE new_etopo.cdf

 ! "rose[d=etopo60]" is the original.
 ! "depth[d=new_etopo]" is the edited version.
 ! Redefine "depth[d=etopo60]" as a tool for for selective
editing.
yes? LET/D=etopo60 depth = rose[D=etopo60]-rose[D=etopo60] +
correction

 ! An example edit: replace a small region with the value 500
yes? LET correction = 500
yes? SAVE/APPEND/FILE=new_etopo.cdf
depth[D=etopo60,X=180:175w,Y=0:2n]
yes? PLOT/X=160e:160w/Y=1n rose[D=etopo60], depth[D=new_etopo]

DEFINE VARIABLE/QUIET

Suppresses message that, by default, tells you when you are redefining an existing
variable. This qualifier is useful in command files. (This is the default behavior
starting with Ferret version 5.2)

DEFINE VARIABLE/TITLE=

Specifies a title (in quotation marks) for the user-defined variable. This title will be
used to label plots and listings. If no title is specified the text of the expression will
be used as the title. (See also SET VARIABLE/TITLE, p. 361.)

DEFINE VARIABLE/UNITS=

Specifies the units (in quotation marks) of the variable being defined. (See
command SET VARIABLE/UNITS, p. 361.)

Ref Sec4.7. DEFINE VIEWPORT

/CLIP /ORIGIN /SIZE /TEXT /XLIMITS /YLIMITS/AXES

Defines a new viewport (a sub-rectangle of the graphics window).

yes? DEFINE VIEWPORT[/qualifiers] view_name

Issuing the command SET VIEWPORT is best thought of as entering "viewport
mode." While in viewport mode all previously drawn viewports remain on the
screen until explicitly cleared with either SET WINDOW/CLEAR or CANCEL
VIEWPORT. If multiple plots are drawn in a single viewport without the use of
/OVERLAY the current plot will erase and replace the previous one; the graphics
in other viewports will be affected only if the viewports overlap. If viewports
overlap the most recently drawn graphics will always lie on top, possibly obscuring
what is underneath. By default, the state of "viewport mode" is canceled.

Example:

yes? DEFINE VIEWPORT/XLIMITS=0,.5/YLIMITS=0,.5 LL

Defines a viewport that will place graphical output into the lower left quarter of the
screen, and names the viewport "LL".

Command qualifiers for DEFINE VIEWPORT.

DEFINE VIEWPORT/XLIMITS=/YLIMITS=

Specifies the portion of the full window to be used.

yes? DEFINE VIEWPORT/XLIMITS=x1,x2/YLIMITS=y1,y2 view_name

The values of the limits must be in the range [0,1]; they refer to the portion of the
window (of height and length 1) which defines the viewport. Together, /XLIMITS

and /YLIMITS replace the CLIP, ORIGIN, and SIZE qualifiers in older Ferret
versions.

DEFINE VIEWPORT/TEXT=

Controls shrinkage (or expansion) of text.

yes? DEFINE VIEWPORT/TEXT=n view_name

In some cases text appearance may become unacceptable due to viewport size and
aspect specifications. A value of 1 produces text of the same size as in the full
window; 0 < n < 1 shrinks the text; n > 1 enlarges text. Sensible values go up to
about 2. When the qualifier /TEXT is omitted, Ferret computes a text size that is
appropriate to the size of the viewport.

Note that /TEXT modifies the prominence of the text through manipulation of axis
lengths rather than through direct manipulation of the many text size specifications.
A low value of text prominence produces axes that are "long" (as seen with SHOW
SYMBOLS, p. 195, or PPL LIST XAXIS, p. 163), making the (fixed size) text
appear less prominent.

DEFINE VIEWPORT/AXES

Specifies that user's limits are interpreted as the normalized positions of the plot
axes rather than of the entire viewport .

You can change PPL ORIGIN and PPL AXLEN only after SET VIEW is issued.
 Use the new qualifier PLOT/NOYADJUST to avoid resetting the Y origin --
relevant during PLOT commands that require extra room for a large key block
under the axes or for viewports that lie close to the bottom of the window where
there may not be room below the Y origin. If /NOYADJUST is specified, and the
viewport is near the bottom of the window, the labelling at the bottom of the plot
will be lost.

DEFINE VIEWPORT/XLIMITS=x1,x2/YLIMITS=y1,y2/AXES view_name

Example 1:

This example shows the effect of the /YADJUST qualifier on the plot command.
 Define two viewports and plot; on the left the Y axis is adjusted automatically, on
the right we specify /NOADJUST and the labelling below the plot is not plotted.

yes? DEFINE VIEW/AXES/XLIM=0:0.5/YLIM=0:0.5 llax
yes? DEFINE VIEW/AXES/XLIM=0.5:1/YLIM=0:0.5 lrax
yes? SET VIEW llax
yes? PLOT/VS/LINE/I=1:314 i*cos(i/20),i*sin(i/20)

yes? SET VIEW lrax
yes? PLOT/VS/LINE/I=1:314/NOYADJUST i*cos(3+i/20),i*sin(3+i/20)

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ref_viewaxes_a.GIF

Example 2:

DEFINE VIEWPORT/AXES can be used to set guide lines on a plot

yes? CANCEL VIEW
yes? DEFINE VIEW/AXES allax

yes? SET VIEW allax
yes? PLOT/VS/LINE/HLIM=0:1/VLIM=0:1/NOLAB
{0.5,0.5,,0,1},{0,1,,0.5,0.5}
yes? PLOT/VS/LINE/OVER/NOLAB {0.25,0.25,,0,1},{0,1,,0.25,0.25}
yes? PLOT/VS/LINE/OVER/NOLAB {0.75,0.75,,0,1},{0,1,,0.75,0.75}

yes? LABEL 0.26,0.95,-1,0,.2 @P2@AC<-At 0.25
yes? LABEL 0.76,0.95,-1,0,.2 @P3@AC<-At 0.75

yes? DEFINE VIEW /XLIM=0.25:0.75/YLIM=0.25:0.75/TEXT=1/AXES mid
yes? SET VIEW mid
yes? PLOT/VS/HLIM=-1:1/VLIM=-1:1/LINE/I=1:200 cos(i/15),sin(i/15)

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/Ref_viewaxes_b.GIF

DEFINE VIEWPORT/CLIP=

This qualifier is obsolete; see XLIMITS= and /YLIMITS= (above). Specifies the
location of the upper right corner of the viewport.

DEFINE VIEWPORT/ORIGIN=

This qualifier is obsolete; see /XLIMITS= and /YLIMITS= (above). Specifies the
location of the lower left corner of the viewport.

DEFINE VIEWPORT/SIZE=

This qualifier is obsolete; see /XLIMITS and /YLIMITS (above). Specifies the
scaling factor to use relative to the size of the full window.

Ref Sec5. ELIF

The ELIF command is a part of Ferret's conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further
description under the IF command (p. 312) in this Commands Reference section.

Ref Sec6. ELSE

The ELSE command is a part of Ferret's conditional command execution
capability: IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See
further description under the IF command (p. 312) in this Commands Reference
section.

Ref Sec7. ENDIF

The ENDIF command is a part of Ferret's conditional command execution
capability: IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See
further description under the IF command (p. 312) in this Commands Reference
section.

Ref Sec8. EXIT

/LOOP/SCRIPT/PROMPT/PROGRAM/COMMAND

When issued interactively this command terminates program Ferret.

When executed within a command file, with no qualifiers, this command terminates
the execution of the command file and returns control to the level in Ferret that
executed the file (the user or another command file).

"QUIT" in a command file is an alias for EXIT without a qualifier. It will exit the
current script, or the program if you are at the Ferret prompt.

Command qualifiers for EXIT:

EXIT/LOOP

When executed from within a loop, Ferret will stop execution of that loop and
return to the level in Ferret which executed the loop.

EXIT/SCRIPT

When executed from within a script, this command will terminate theexecution of
that script and return control to the level in Ferret which executed the script (either
the user or another command file).

EXIT/PROMPT

When executed at any point, either in a script or loop, this command will
immediately terminate execution and Ferret will return to the"yes?" prompt and
return control to the user.

EXIT/PROGRAM

EXIT/COMMAND_FILE

When executed from within a command file EXIT/COMMAND_FILE or
EXIT/PROGRAM forces an immediate exit from Ferret without returning control
to the user or another command file.

Ref Sec9. FILE

The FILE command is an alias for SET DATA/EZ (p.343). All qualifiers and
restrictions are identical to SET DATA/EZ

Example:

yes? FILE/VARIABLES="u,v" velocities.dat
 is equivalent to
yes? SET DATA/EZ/VARIABLES="u,v" velocities.dat

Ref Sec10. FILL

Alias for CONTOUR/FILL (p. 288), color-filled contour plot. All qualifiers and
restrictions are identical to CONTOUR/FILL.

Example:

yes? FILL/PAL=land_sea etopo60
 is equivalent to
yes? CONTOUR/FILL/PAL=land_sea etopo60

In a curvilinear coordinate system (map projections)

yes? FILL[/qualifiers] expression, xcoords, ycoords (see p.
187)

Ref Sec11. FRAME

/FORMAT /FILE

Saves the current graphics display image as a frame in the movie file initialized
with the command SET MOVIE. FRAME is also a qualifier for the "action"
commands PLOT, CONTOUR, POLYGON, SHADE, VECTOR and WIRE.

yes? CONTOUR my_var

yes? FRAME

Note that FRAME follows a command which creates an image.

FRAME/FORMAT=format controls the format of the file produced.

FRAME/FORMAT=HDF appends an HDF raster 8 drawn to the specified or
implied input file. The default format is HDF.

FRAME/FORMAT=GIF creates a new GIF file, any existing GIF file with the
specified or implied name using relative version number or less. Note that in this
mode of grabbing an image Ferret creates a GIF by requesting the image back from
your screen (your X server). This means that the X server normally has to be
configured as pseudo-color. An alternative approach which does not share this

restriction is to start Ferret with "ferret -gif" (see p. 6)

FRAME/FILE=filename specifies the name of the output file. If /FORMAT is not
specified the output format is inferred from filename extensions of .hdf, .HDF, .gif,
or .GIF.

The maximum filename length, including path, that is allowable is 255 characters.

Ref Sec12. GO

/HELP

Executes a list of commands stored in a file.

yes? GO file_name

If no filename extension is specified a default of .jnl will be assumed. If the full
path is specified then the filename must be enclosed in double quotation marks.

The GO command can pass arguments to the script (tool) it executes. See the
introductory chapter, section "Writing GO Tools" (p. 20) for more information.
Arguments to the GO command may be separated by blanks or commas. To specify
multiple words as a single argument, enclose them in quotation marks. To specify
an argument that is deliberately omitted, use " " or two consecutive commas.

The response of Ferret to errors encountered during execution of the command file
is determined by mode IGNORE_ERRORS. (See command SET MODE, p. 349.)

The echoing of command file lines is controlled by mode VERIFY.

The GO command understands a special syntax called "relative version numbers."
If a filename is specified for the GO command which has a version value of zero or
less its value is interpreted as relative to the current highest version number. See the
chapter “Computing Environment”, section “Relative version numbers” (p. 228) for

a discussion of relative version numbers of files.

Note: The command SET MODE IGNORE_ERRORS is useful when rerunning
past sessions which may have errors.

/HELP

The command GO/HELP filename opens the named script with the Unix "more"
command and displays the first 20 lines of the named file. Use this command to
quickly see the documentation in a GO script.

Ref Sec13. HELP

On Unix systems interactive Ferret help is available from the command line with
the commands Fapropos, Fhelp, and Ftoc. If multiple windows are not available on
your system the ^Z key can be used to suspend the current Ferret session and access
the help; the Unix command "fg" will then restore the suspended session.

See the introductory chapter, section "Unix on-line help" (p. 28) for more
information.

Ref Sec14. IF

Ferret provides an IF-THEN-ELSE syntax to allow conditional execution of
commands.

In addition Ferret uses an "masking" IF-THEN-ELSE syntax for masking. These
share keywords but have different usage.

Ref Sec14.1. IF-THEN-ELSE conditional execution

This syntax may be used in two styles—single line and multi-line. In both the
single and multi-line styles the true or false of the IF condition is determined by
case-insensitive recognition of one of these options:

TRUE condition:

● a valid, non-zero numerical value
● TRUE
● T
● YES
● Y

FALSE condition:

● a zero value
● an invalid embedded expression (see next paragraph)
● FALSE
● F
● NO
● N
● BAD
● MISSING

Examples:

IF `i GT 5` THEN SAY "I is too big" ENDIF

writes message if the value of I is greater than 5

IF ($yes_or_no) THEN GO yes_script ELSE GO no_script

executes yes_script or no_script according to the value of the symbol yes_or_no

IF ($dset%|coads>TRUE|%) THEN GO my_plot

executes the script my_plot.jnl only if the symbol dset contains the exact string
"coads"

IF `i LT 3` THEN
 GO option_1
ELIF `i LT 6` THEN
 GO option_2
ELSE
 GO option_3
ENDIF

uses the multi-line IF syntax to select among GO scripts.

Embedded (grave accent) expressions can be used in conjunction with the IF
syntax. For example, `3 GT 2` (Is three greater than 2?) evaluates to "1" (TRUE)
and `3 LT 2` (Is three less than 2?) evaluates to "0" (FALSE). If the result of a
grave accent expression is invalid, for example division by zero as in `1/0`, the
string "bad" is, by default, generated. Thus invalid expressions are regarded as
FALSE.

Symbol substitution permits IF decisions to be based on text-based conditions.
Suppose, for example, the symbol ($DSET) contains a string: either coads or
levitus. Then an IF condition could test for coads using
($DSET%|coads>TRUE|%*>FALSE%).

IF ($DSET%|coads>TRUE|*>FALSE%) THEN
 GO cscript
ELSE
 GO lscript
ENDIF

The single line style allows IF-THEN-ELSE logic to be applied on a single line.
For example, to make a plot only when the surface (Z=0) temperature exceeds 22
degrees we might use

IF `TEMP[X=160W,Y=2N,Z=0] GT 22` THEN PLOT TEMP[X=160W,Y=2N]

The single line syntax may be any of the following:

 IF condition THEN clause_1
 IF condition THEN clause_1 ENDIF

 IF condition THEN clause_1 ELSE clause_2
 IF condition THEN clause_1 ELSE clause_2 ENDIF

Note that both ELSE and ENDIF are optional in the single line syntax. Groups of
commands enclosed in parentheses and separated by semicolons can be used as
clause_1 or as clause_2. There is no ELIF (pronounced "else if") statement in the
single line syntax. However, IF conditions can be nested as in

IF `i1 GT 5` THEN (IF `j1 LT 4` THEN go option_1 ELSE go
option_2)

The multi-line style expands the IF capabilities by adding the ELIF statement.
Multi-line IF statement follows the pattern

IF condition_1 THEN

 clause_1_line_1

 clause_1_line_2

 ...

ELIF condition_2 THEN

 clause_2_line_1

 ...

ELIF condition_3 THEN

 ...

ELSE

 ...

ENDIF

Note that THEN is optional at the end of IF and ELIF statements but the ENDIF
statement is required to close the entire IF block. Single line IF statements may be
included inside of multi-line IF blocks.

Ref Sec14.2. IF-THEN-ELSE logic for masking

Ferret expressions can contain embedded IF-THEN-ELSE logic. The syntax of the
IF-THEN logic is simply (by example)

LET a = IF a1 GT b THEN a1 ELSE a2

This syntax is especially useful in creating masks that can be used to perform
calculations over regions of arbitrary shape. For example, we can compute the
average air-sea temperature difference in regions of high wind speed using this
logic:

SET DATA coads_climatology
SET REGION/X=100W:0/Y=0:80N/T=15-JAN
LET fast_wind = IF wspd GT 10 THEN 1
LET tdiff = airt - sst
LET fast_tdiff = tdiff * fast_wind

We can also make compound IF-THEN statements. The parentheses are included
here for clarity, but are not necessary. Multi-line IF-THEN-ELSE constructs are
not allowed in embedded logic

LET a = IF (b GT c AND b LT d) THEN e

LET a = IF (b GT c OR b LT d) THEN e

LET a = IF (b GT c AND b LT d) THEN e ELSE q

The user may find it clearer to think of this logic as WHERE-THEN-ELSE to aviod
confusion with the IF used to control conditional execution of commands.

Ref Sec15. LABEL

/NOUSER

Places a label on the current plot; alias for PPL %LABEL. %LABEL is one of
PPLUS's primitive plot commands. It places a label on the plot immediately after
being issued (rather than deferring placement). PPLUS does not assign numbers to
labels created with LABEL, so they cannot be manipulated as movable labels. The
label can also be placed on the plot using the mouse to point and click (see the
chapter "Customizing Plots", section "Positioning labels using the mouse pointer,"
p. 167).

yes? LABEL xpos, ypos, center, angle, size text

xpos, ypos position in user units (world coordinates)

center -1 left justification (the default)

 0 centered

 1 right justification

angle angle in degrees, 0 degrees at 3 o'clock (default 0)

size size of text in inches (default 0.12)

See the chapter "Customizing Plots", section "Labels" (p. 162) for examples.

Command qualifiers for LABEL:

LABEL/NOUSER

Locates labels in inches instead of user units (xpos and ypos are specified in inches
rather than in world coordinates).

Ref Sec16. LET

The LET command is an alias for DEFINE VARIABLE (p.301). All qualifiers and
restrictions are identical to DEFINE VARIABLE.

Example:

yes? LET A = B
 is equivalent to
yes? DEFINE VARIABLE A = B

Ref Sec17. LIST

/I/J/K/L /X/Y/Z/T /D /ILIMITS /JLIMITS /KLIMITS /LLIMITS /XLIMITS
/YLIMITS /ZLIMITS /TLIMIT /APPEND /FILE /FORMAT /HEADING
/NOHEAD /TITLE /ORDER /RIGID /PRECISION /CLOBBER /SINGLE /QUIET
 /WIDTH

Produces a listing of the indicated data.

LIST[/qualifiers] [expression_1 , expression_2 , ...]

Example:

yes? LIST/Z=10 u , v , u^2 + v^2

Lists the 3 quantities specified using the current default data set and region (at
depth 10).

Parameters

Expressions may be any valid expression. See the chapter "Variables and
Expressions", section "Expressions" (p. 61) for a definition of valid expressions. If
multiple variables or expressions are specified they may be listed together in
columns or in sequence depending on the /SINGLY qualifier. The expression(s)
will be inferred from the current context if omitted from the command line.

If multiple expressions are given on the command line and /SINGLY is not
specified, then the expressions must be conformable. See the chapter "Variables
and Expressions", section "Multi-dimensional expressions" (p. 63) for a definition
of conformable expressions. Degenerate or single point axis limits will be promoted
up (values repeated) as needed.

Example:

yes? LIST/I=1:3/J=1:2 i+j, i

Command qualifiers for LIST:

LIST/I= /J= /K= /L=/X= /Y= /Z= /T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,
Z, or T) to be used when evaluating the expression(s) being listed.

LIST/ILIMITS=/JLIMITS=/KLIMITS=/LLIMITS=

Specifies the size of the desired NetCDF output file independently from the actual
data being saved. By specifying axis limits in excess of the saved expression's
limits it is possible to /APPEND data later. (See the chapter "Converting to
NetCDF", section "Simple Conversions Using Ferret," p. 229, ex. 4).

LIST/XLIMITS=/YLIMITS=/ZLIMITS=/TLIMITS=

Specifies the size of the desired NetCDF output file independently from the actual
data being saved. By specifying axis limits in excess of the saved expression's
limits it is possible to /APPEND data later. (See the chapter "Converting to
NetCDF", section "Simple Conversions Using Ferret," p. 229, ex. 4).

LIST/D=

Specifies the default data set to be used when evaluating the expression(s) being
listed.

LIST/APPEND

Use this qualifier together with the /FILE qualifier to indicate that the listed data
should be appended to a pre-existing file. If no file exists by the name indicated a
new file is created. This qualifier is not applicable to /FORMAT=GT. When used
with /FORMAT=CDF it permits any data in the file to be overwritten, new
variables to be added to the file, and appending of new indices along the T axis of
the variables in the file. To append slabs of data in other dimensions, see the
example in the NetCDF chapter (p. 230). This qualifier overrides the command
CANCEL LIST/APPEND.

LIST/FILE [=file_name]

Names a file to receive the listed data. If /FILE is specified with no name then the
default name is used from the SET LIST/FILE command.

Example:

yes? LIST/FILE=my_file.dat sst[D=coads_climatology]

See command SET LIST (p. 346) for further information on automatic filename
generation.

LIST/CLOBBER

Used with LIST/FILE. Indicates that any existing file with the name used is to be
deleted, before writing. If CLOBBER is not specified and the file exists, and error
message is given.

Example:

yes? LIST/FILE=my_file.dat/CLOBBER sst[D=coads_climatology]

LIST/FORMAT=

Specifies an output format (=format_choice) for the data to be listed.

yes? SET LIST/FORMAT=format_choice
 or
yes? SET LIST/FORMAT (use format set by SET LIST/FORMAT)

Format choices:

FORTRAN format produces ASCII output

"UNFORMATTED" produces unformatted (binary) output using FORTRAN
record structure

"CDF" produces NetCDF format output

"GT" produces TMAP GT format

"STREAM" produces unstructured binary floating point (C-style)

"tab" produces tab-delimited output

"comma" produces comma-delimited output

This command has the same function as SET LIST/FORMAT except that it does
not affect future LIST commands. See command SET LIST/FORMAT (p. 347) for
detailed documentation.

Notes for LIST/FORMAT:

1) All output values, regardless of the /FORMAT designation, will be of type
single precision floating point. For FORTRAN output formats this means all
numerical field specifiers must be "F", "E", or "G".

2) For FORTRAN-formatted and UNFORMATTED (binary) output, the contents
of a single output "record" are determined by the /ORDER qualifier. For example,
each record will be a line of Y values for LIST/ORDER=YX. If /ORDER is
omitted, the records will be the first output axis of greater than unity length taken in
the order X, Y, Z, then T. FORTRAN-formatted output records may be further split
by the usual rules of FORTRAN output formatting.

3) FORTRAN formats must be enclosed in parentheses. If blanks are included in
the format it must be enclosed in quotation marks. Output strings are permitted in
the format.

 Example:

yes? LIST/FORMAT=("The temperature is:", F6.3) sst[X=180, Y=0]

4) When FORTRAN formats are used, and more than one value per record is
desired, the /ORDER qualifier (p319) must be used, even if the variable is defined

along only one axis.

 Example:

yes? LIST/FORMAT=(8F6.3)/ORDER=T sst[X=180, Y=0]

5) The default listing style includes labels for the rows and columns of the output.
When a FORTRAN format is specified, these labels are omitted.

6) On Unix systems the /FORMAT=UNFORMATTED specifier produces
FORTRAN-style variable-length records. On most implementations this means that
a 4-byte field containing the record length begins and ends each record of data.

7) The command alias SAVE is provided for the commonly used
LIST/FORMAT=CDF. NetCDF outputs are self-documenting, including grid
definitions. The output files can be used as input with the command USE—alias for
SET DATA/FORMAT=CDF. See command SAVE (p. 336) for further notes about
NetCDF files.

LIST/HEAD

For ASCII data listings this command determines whether to precede the listing
with a heading describing data set, variable and region. This qualifier overrides the
CANCEL LIST/HEAD command. Starting with Ferret version 5.4 the default
heading output of the list command is expanded to include the filename, file path,
and complete information on the subset of the data that's listed. See the example
under LIST/WIDTH= (p. 320)

LIST/HEADING[=ENHANCED]

For ASCII data listings this qualifier determines whether to precede the listing with
a heading that describes the data set, variable, and region. This qualifier overrides
the CANCEL LIST/HEAD command. When the argument
/HEADING=ENHANCED is used a self-documenting heading is provided that
includes the axis coordinates.

For NetCDF output files (alias SAVE) the /HEADING=ENHANCED option
causes the NetCDF file structure to include extra coordinate information that
describes how the particular data subset being written fits within the broader
coordinate system of the grid from which it is extracted. When a NetCDF file with
an enhanced heading is accessed by Ferret (using SET DATA or USE) the index
values will appear to be consistent with the parent data set.

LIST/NOHEAD

Does not precede listing with a heading describing data set, variable and region.
This qualifier overrides the SET LIST/HEAD command.

LIST/ORDER=

Specifies the order (ORDER=permutation) in which axes are to be laid out in the
listing.

Examples:

yes? LIST/ORDER=XY sst !X varies fastest

yes? LIST/ORDER=YX sst !Y varies fastest

The "permutation" string may be any permutation of the letters X, Y, Z, and T.
/ORDER is applicable only to /FORMAT=unf and FORTRAN formats.

Note that a 1-dimensional list will, by default, place only one value per record. The
/ORDER qualifier can cause the 1-dimensional list to occur in a single record. For
example,

LIST/I=1:5 I

will list as 5 records whereas

LIST/I=1:5 /ORDER=X I

will list 5 values on a single record.

LIST/PRECISION=#

Controls the digit precision of LIST output

Using the qualifier /PRECISION=#digits the output precision of the LIST
command may be easily controlled. This qualifier functions exactly as does the
SET LIST/PRECISION= command but it applies only to the current command.

LIST/QUIET

Using the qualifier /QUIET will prevent the message "LISTing to file
XXXX.XXXX" from being displayed.

LIST/RIGID

Valid only with /FORMAT=CDF. Indicates that Ferret should not create a NetCDF
"record" axis as the time axis for any of the variables listed with this command.
Time axes are, instead, of fixed length and the /APPEND qualifier is not usable to
extend the listing.

LIST/SINGLY

This qualifier is relevant only when multiple expressions are specified in the LIST
command. When the /SINGLY qualifier is specified the entire listing of each
expression including (optional) heading and all data is completed before proceeding
to the next expression.

By default the expressions are not listed singly—each line contains one value of
each expression. The qualifier has no effect if only a single expression is specified.
If the /FILE qualifier is specified to use automatic filename generation and

/APPEND is not specified, then each expression is listed to a separate file.

LIST/TITLE="title string"

Valid only with /FORMAT=CDF. Causes the global attribute "title" to be defined
in a NetCDF file, thereby setting its title.

LIST/WIDTH=columns

For multi-column output, controls the width of the listing on the page so the output
line is no longer than "columns" characters.

Example:

yes? USE coads_climatology
yes? LIST/L=1/WIDTH=50/Y=0:4 sst
 VARIABLE : SEA SURFACE TEMPERATURE (Deg C)
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 SUBSET : 180 by 2 points (LONGITUDE-LATITUDE)
 TIME : 16-JAN 06:00
 ... listing every 36th point
 21E 93E 165E 123W 51W
 1 37 73 109 145
3N / 47: 28.30 29.04 25.36 27.49
1N / 46: 28.29 29.12 24.82 27.49

yes? list/l=1/wid=70/y=0:4 sst
 VARIABLE : SEA SURFACE TEMPERATURE (Deg C)
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 SUBSET : 180 by 2 points (LONGITUDE-LATITUDE)
 TIME : 16-JAN 06:00
 ... listing every 23th point
 21E 67E 113E 159E 155W 109W 63W 17W

 1 24 47 70 93 116 139 162

3N / 47: 28.15 27.54 29.09 26.90 25.34
 27.58
1N / 46: 28.18 29.24 26.49 24.90
 27.05v

Ref Sec18. LOAD

/I/J/K/L /X/Y/Z/T /D /NAME /PERMANENT /TEMPORARY

Loads a variable or expression into memory.

yes? LOAD[/qualifiers] [expression_1 , expression_2 , ...]

Loading may speed execution of later commands that will require the loaded data.
Often it is helpful to LOAD a large region of data encompassing several small
regions in which the analysis will be pursued.

Load interacts with the current context exactly as other "action" commands
CONTOUR, PLOT, SHADE, VECTOR, LIST, etc. do.

Parameters

Expressions may be any valid expression. See the chapter "Variables and
Expressions", section "Expressions" (p. 61) for a definition of valid expressions. If
multiple variables or expressions are specified they are treated in sequence. The
expression(s) will be inferred from the current context if omitted from the
command line.

Command qualifiers for LOAD:

LOAD/I=/J=/K=/L=/X=/Y=/Z=/T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,

Z, or T) to be used when evaluating the expression(s) being loaded.

LOAD/D=

Specifies the default data set to be used when evaluating the expression(s) being
loaded.

LOAD/NAME

Obsolete. Provided for compatibility with much older Ferret versions.

LOAD/PERMANENT

Data loaded with LOAD/PERMANENT are kept in memory until a
LOAD/TEMPORARY command is given that refers to the same data. See
command LOAD/TEMPORARY (p. 322). Note that this command may cause
memory fragmentation. It should generally be given immediately following
CANCEL MEMORY and preferably is used only to load file variables (as opposed
to expressions).

LOAD/TEMPORARY (default)

Data loaded with LOAD or LOAD/TEMPORARY is brought into memory but may
be unloaded based on a priority scheme of least recent use when memory space is
required.

Ref Sec19. MESSAGE

/CONTINUE /QUIET /JOURNAL /ERROR

Displays a message at the terminal.

yes? MESSAGE text

By default a carriage return is required from the keyboard for program execution to
continue (used to halt the execution of a command file). PAUSE is an alias for
MESSAGE.

Command qualifiers for MESSAGE:

MESSAGE/CONTINUE

Continues program execution following the display of the message text without
waiting for a carriage return from the operator. SAY is an alias for
MESSAGE/CONTINUE.

MESSAGE/JOURNAL

Writes the message to the journal file.

MESSAGE/ERROR

Writes the message to standard error.

MESSAGE/QUIET

Waits for a carriage return from the operator but does not supply a prompt for it.

Ref Sec20. PALETTE

Alias for PPL SHASET SPECTRUM=. Specifies or restores the default color.

yes? PALETTE pal_name

The argument is the name of a palette file. Many palettes are included in the Ferret
distribution. Try the Unix command "Fpalette '*'" to see a list of available palette
files.

Some of the palettes are designed for particular needs. "centered.spk", for example,
emphasizes the contrast between positive and negative shade levels. "land_sea.spk"
uses blue tones for negative values and browns and greens for positive values,
making it suitable for topography displays.

Palette files end in the file suffix .spk, but the suffix is not necessary when
specifying a palette. Use GO try_palette pal_name to display a palette.
The GO files "exact_color.jnl" and "squeeze_colors.jnl" can be used to modify
palettes. You can also create new palette files with a text editor. See the chapter
"Customizing Plots", section "Shade and fill colors" (p. 171) for the format of a
palette file.

PALETTE with no argument restores the default palette. When you use the
qualifier /PALETTE= in conjunction with /SET_UP, PPLUS makes the specified
color spectrum the new default palette, and all subsequent shaded or color-filled
plots will use that palette as the default. To restore the previous palette to the
default, use PALETTE with no argument after your customization.

To assist you in choosing a good palette for your plot, there is an FAQ, How can I
find a good color palette for my plot? at
http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html

Ref Sec21. PATTERN

http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html#_TN_Ref_viewaxes_b
http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html#_TN_Ref_viewaxes_b

Alias for PPL PATSET PATTERN=. Specifies or restores the default pattern.

yes? PATTERN patt_name

The argument is the name of a pattern file. Many patterns are included in the Ferret
distribution. Try the Unix command "Fpattern '*'" to see a list of available pattern
files.

Ferret has the capability to make color fill plots using solid color only, and also
with colors laid on in patterns.

The PATTERN command sets the patterns to be used in a plot generated with the
SHADE, FILL and POLYGON commands. It is similar to the PALETTE
command, which sets colors, but the PALETTE and PATTERN commands act
independently.

When Ferret is started up, only one pattern is set, SOLID. The SOLID pattern is
equivalent to not using any pattern, and SHADE, FILL and POLYGON fill their
cells with solid color.

Pattern files end in the file suffix .pat, but use of the suffix is not necessary when
specifying a pattern. Use GO show_pattern patt_name to display the
patterns specified in a pattern file. GO show_all_patterns draws a plot
showing all the available pattern files and their names. Notice that patterns can be
used with a single color, or multiple colors, depending entirely on the PALETTE
specification.

A pattern file may specify one or more patterns. If there are fewer patterns
specified in a pattern file than there are levels in a particular plot, the patterns will
be repeated.

Ref Sec22. PAUSE

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/squares_color.gif
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/squares_patterns.gif
file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/show_patterns.gif

Alias for MESSAGE (p. 322)

Ref Sec23. PLOT

/I/J/K/L /X/Y/Z/T /OVERLAY/ SET_UP /FRAME /D/ TRANPOSE/ VS/
SYMBOL/ NOLABEL /LINE /COLOR /THICKNES /SIZE /HLIMITS /VLIMITS
/TITLE /STEP /NOAXES /DASH /NOYADJUS /AXES /HLOG /VLOG

Produces a line plot.

yes? PLOT[/qualifiers] [expression_1 , expression_2 , ...]

The indicated expression(s) must represent a line (not a plane) of data (PLOT/VS is
an exception). Unless the /VS qualifier is used, the independent variable is the
underlying coordinate axis for this line of data.

Example:

yes? PLOT/l=1:100 sst

produces a time series plot of the first 100 points of sst.

Parameters

The argument(s) for PLOT specify the variable or expression to be plotted.

When the /VS qualifier is used the indicated expressions may have any geometry in
4D space but they must match in the total number of points in each expression. The
points are associated in the order of their underlying axes. When the /VS qualifier
is not used the indicated expression(s) must describe a line (not a plane) of data.

The expression(s) are inferred from the current context if omitted from the
command line—i.e., if no expression is given then the argument most recently
given is used, or the default expression may be explicitly set with SET
EXPRESSION.

When Ferret plots multiple data lines simultaneously, PPLUS automatically cycles
through pen colors and symbols, creating up to 26 distinct line types. Try GO
line_samples to see samples of these styles.

Command qualifiers for PLOT:

PLOT/I=/J=/K=/L=/X=/Y=/Z=/T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,
Z, or T) to be used when evaluating the expression(s) being plotted.

PLOT/D=

Specifies the default data set to be used when evaluating the expression(s) being
plotted.

PLOT/FRAME

Causes the graphic image produced to be captured as an animation frame and
written to the movie file specified by SET MOVIE. In general the FRAME
command (p. 310) is more flexible and we recommend its use rather than this
qualifier.

PLOT/COLOR=/THICKNESS=

Simple syntax for line plots. For line plots it is possible with these qualifiers to
control line thickness and color with commands such as

yes? PLOT/COLOR=blue/THICK=2 I[i=1:3]

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/line_samples.gif

This is equivalent to the (still supported) use of the /LINE qualifiers in

 yes? PLOT/LINE=10 I[i=1:3] ! 4(blue) + 6*(2-1)

The available color names are Black, Red, Green, Blue, LightBlue, Purple, and
White (not case sensitive), corresponding to the /LINE values 1-6, respectively.
(/COLOR also accepts numerical values.) The line thickness may be 1, 2, or 3
corresponding to pixel thickness on the screen or corresponding to multiples of the
default line thickness on hard copy. Note that White is only available for
THICKNESS=1 (the default thickness).

When plotting a number of lines together with
PLOT/OVER/COLOR=/THICKNESS= the default behavior is for symbols to be
plotted starting with the seventh line plotted. To plot lines only, add the /LINE
qualifier.

PLOT/COLOR=/THICKNESS=/SYMBOL=/SIZE=
Simple syntax for plots using symbols. For symbol (scatter) plots (PLOT/VS or
PLOT/SYMBOL), control the color, size, and line thickness of the symbols with
commands such as:

yes? PLOT/COLOR=red/THICKNESS=2/SYMBOL=4/SIZE=0.2 I[i=1:5]

The available color names are Black, Red, Green, Blue, LightBlue, Purple, and
White (not case sensitive), corresponding to the /LINE values 1-6, respectively.
(/COLOR also accepts numerical values.) The line thickness may be 1, 2, or 3
corresponding to pixel thickness on the screen or corresponding to multiples of the
default line thickness on hard copy; note that White is only available in the default
THICKNESS=1. The /SIZE is given in units of "inches", consistent with the
PLOT+ usage of "inches". (These are the same units as in, say, "ppl axlen 8,6", to
specify plot axes of lengths 8 and 6 inches for horizontal and vertical axes,
respectively.)

PLOT/DASH[=]

(New qalifier with version 5.4) Simple syntax control over the dash characteristics
using the same arguments as in the PPLUS "LINE" command: DOWN1, UP1,
DOWN2, UP2, where these are in inches. For simple dashes let

DOWN1=DOWN2 and UP1=UP2. For alternating long and short dashes, make
DOWN2 longer or shorter. The parentheses are optional.

 Example:

yes? PLOT/DASH/I=1:100 sin(i/5)
yes? PLOT/OVER/DASH=(0.3,0.1,0.3,0.1)/COLOR=RED/THICK/I=1:100
sin(i/7)
yes? PLOT/OVER/DASH=(0.6,0.2,0.1,0.2)/COLOR=RED/THICK/I=1:100
sin(i/9)

PLOT/LINE[=]

The /LINE qualifier without =n causes the PLOT command to connect the plotted
points with a line regardless of the state of the /SYMBOLS qualifier.

For simpler specification of line characteristics see
PLOT/COLOR=/THICKNESS=/DASH= above (p. 325) . /LINE=n specifies a pre-
defined line style. "n" is an integer between 1 and 18. GO line_thickness
draws samples of the available line styles. Line style "1" is always a solid line in
the foreground color (black or white). Other line styles are device dependent
(colors or dash patterns). For color devices, n=1–6 draws single-thickness lines
each a different color. n=7–12 draws double-thick lines in the same color order, and
n=13–18 draws triple-thick lines. See the chapter "Customizing Plots", section
"Text and line colors" (p. 168) for a chart of the default colors.

PLOT/NOLABELS

Suppresses all plot labels.

PLOT/OVERLAY

Causes the indicated field(s) to be overlaid on the existing plot. This qualifier can
also be used to overlay lines or symbols on 2D plots (SHADE, CONTOUR, or

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/line_thickness.gif

VECTOR) provided the axis scalings are appropriate.

PLOT/SET_UP

Performs all the internal preparations required by program Ferret for plotting but
does not actually render the plot. The command PPL can then be used to make
changes to the plot prior to producing output with the PPL PLOT command. This
makes possible certain customizations that are not possible with Ferret command
qualifiers. See the chapter "Customizing Plots" (p. 155).

PLOT/SYMBOL[=]

The /SYMBOL qualifier causes the PLOT command to mark each plotted point
with a symbol. If the /LINE qualifier is given too the symbols are also connected
with a line; if /LINE is omitted no connecting line is drawn.

Optionally, the symbol number may be explicitly specified as an integer value
between 1 and 88. The integer refers to the PPLUS plot marker numbers (e.g., 1 for
x, 3 for +, etc.). Type "GO show_symbols" and "GO show_88_syms" at the Ferret
prompt to see available symbols and their reference numbers . The symbols are also
documented on page 1 of the document $FER_DIR/doc/pplus_fonts.ps. The PLOT
MARK font can be accessed using the font code @PM.

PLOT/SYMBOL=DOT
This command uses the smallest dot that can be represented on the display device.
 Note that the dots may not show up well on all devices.

PLOT/TITLE=

Allows user to specify a plot title (enclosed in quotation marks). Without this
qualifier Ferret selects a title based on information about the expression(s). To
include font change and color_thickness specifications (e.g., @TI@C002) in the
title string, it is necessary either to CANCEL MODE ASCII or to include a leading

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/show_88_syms.GIF

ESC (escape) character.

PLOT/TRANSPOSE

Causes the horizontal and vertical axes to be interchanged. By default the X axis is
drawn horizontally on the plot and the Y and Z axes are drawn vertically. For Y-Z
plots the Z data axis is vertical by default.

PLOT/VS

Specifies that the first expression given in the command line is to be used as the
independent axis.

Example:

yes? PLOT/Y=20S:20N/X=180/T=27740:27741/Z=100/VS temp , salt

Produces a plot of salinity (vertical axis) against temperature (horizontal axis)
along the indicated range of latitudes and times. The plot will be labeled "salt"; the
vertical (dependent) variable is the one that determines the key. The qualifier
/TRANSPOSE can be used in conjunction with /VS to further manipulate the
labeling and axis orientation.

PLOT/VS implies /SYMBOL by default to produce scatter plots. Use
PLOT/VS/LINE to produce a line plot, and PLOT/VS/DASH[=] to plot a dash line
and optionally set its characteristics.

PLOT/HLIMITS=

Specifies axis range and tic interval for the horizontal axis. Without this qualifier
Ferret selects a reasonable range.

yes? PLOT/HLIMITS=lo:hi:[increment] [expression(s)]

The optional "increment" parameter determines tic mark spacing on the axis. If the
increment is negative, the axis is reversed.

The /HLIMITS and /VLIMITS qualifiers will retain their "horizontal" and
"vertical" interpretations in the presence of the /TRANSPOSE qualifier. Thus, the
addition of /TRANSPOSE to a plotting command mandates the interchange of "H"
and "V" on the limits qualifiers.

PLOT/VLIMITS=

Specifies the axis range and tic interval for the vertical axis. See /HLIMITS
(above).

yes? PLOT/VLIMITS=lo:hi:[increment] [expression(s)]

The optional "increment" parameter determines tic mark spacing on the axis. If the
increment is negative, the axis is reversed.

PLOT/AXES[=top,bottom,left,right]

 Turns plotting of individual axes off and on. This replaces the use of the "PPL
AXSET" command. The syntax is

yes? PLOT/AXES[=top,bottom,left,right] var

where the arguments are 1 to turn the axis on and 0 to turn it off. For example:

yes? PLOT/AXES=0,1,1,0 sst ! Draws the bottom and left axes
only

PLOT/NOYADJUST

Avoid resetting the Y origin -- relevant during PLOT commands that require extra
room for a large key block under the axes or for viewports that lie close to the
bottom of the window where there may not be much room below the Y origin. See
the examples for DEFINE VIEWPORT/AXES (p. 305)PLOT/HLOG /VLOG

/VLOG sets a vertical log axis, /HLOG sets a horizontal log axis. If /VLIMITS or
/HLIMITS is specified, they should be in data units (not log10 axis units). If the
axis is a depth axis, an inverse log axis is drawn.

Note: Setting axtype with a PPLUS call before the plot call will not result in a log
plot, though setting axis type with PLOT/SET_UP still works as in previous
versions.

new syntax:

yes? PLOT/VLOG/VLIMITS=10:1000 my_ fcn ! plots my_fcn on a log
axis

Replaces older syntax. The following no longer produces a log plot. As of
Version 5.4, the PLOT command resets the status of the axes to linear.

yes? ppl axtype 1, 3
yes? PLOT/VLIMITS=1:3 my_fcn

These commands in the older PPL syntax duplicate the effect of the new /VLOG
qualifier.

yes? PLOT/SET_UP/vlimits=1:3 my_fcn ! These commands duplicate
the
yes? ppl axtype, 1, 3 ! effect of the new
syntax.
yes? ppl plot

PLOT/XLIMITS= /YLIMITS=

Note: XLIMITS and YLIMITS have been denigrated. Please use HLIMITS and
VLIMITS instead.

Ref Sec24. POLYGON

/I/J/K/L /X/Y/Z/T /OVERLAY /SET_UP /FRAME/D /TRANSPOSE
/COORD_AX /SYMBOL /NOLABELS /LEVELS /LINE /COLOR /PALETTE
/TITLE /THICKNESS /NOAXES /PATTERN /FILL /KEY /NOKEY /HLIMITS
/VLIMITS

Produces a color-filled or line plot of polygons. By default a color key is drawn and
lines are not drawn.

POLYGON[/qualifiers] x-vertices, y-vertices [, values]

Parameters

The two x- and y- vertices parameters separately specify the x and y coordinates of
the vertices of the polygons to be plotted.

The values may be any valid expression. If a color-filled plot is specified, the
numerical value of the expression associated with each polygon determines the
color of that polygon, as in SHADE and FILL plots. See the chapter "Variables and
Expressions", section "Expressions" (p. 61) for a definition of valid expressions. If
values are omitted the /FILL option is not valid—only /LINE plots may be made.

The POLYGON command accepts single and multi-dimensional arguments.

● 1D FORM

yes? POLYGON xpoly1D, ypoly1D, values

where if xpoly1D or ypoly1D contain missing values, those represent the end
of one polygon and the start of the next. The length of the values array must equal
the number of polygons in which case the X coordinate might ve visualized as

 x1,x1,x1,x1,BAD,x2,x2,x2,BAD,x3,x3,x3,x3,x3,x3,x3,x3,BAD,...

where the "1","2","3" refer to the successive polygons The script polymark.jnl
makes a polygon plot by generating the correct 1-D arrays from a set of x and y
coordinates and a polygon-shape specification. See polymark_demo for examples.
 polytube.jnl also makes use of the polymark command to draw "Lagrangian" plots
along a track using color fill.

● 2D FORM

yes? POLYGON xpoly2D, ypoly2D, values

where values must be 1-dimensional and its axis must match in size and
orientation one of the axes from the 2D arrays. This axis represents the list of
successive polygons. The other axis of the 2D coordinates is the coordinates within
each polygon. In the default case the X coordinate is the axis of the coordinates
within polygons, and might be visualized as

 x1,x1,x1,x1,BAD,BAD,...
 x2,x2,x2,BAD,BAD,...
 x3,x3,x3,x3,x3,x3,x3,x3,BAD,BAD,...

(with each list of polygon coordinates along the first axis padded with BAD to
become the same length)

If the "values" argument is not given the coordinate axis may be specified using the
 /COORD_AX qualifier.

Example:

http://www.ferret.noaa.gov/Ferret/Demos/polymark_demo/polymark_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/polytube_demo/polytube_demo.html

yes? LET XTRIANGLE = YSEQUENCE({-1,0,1})
yes? LET YTRIANGLE = YSEQUENCE({-1,1,-1})
yes? LET XPTS = 180+30*RANDU(I[i=1:10])
yes? LET YPTS = 30*RANDU(1+I[i=1:10])
yes? POLYGON XTRIANGLE+XPTS, YTRIANGLE+YPTS, I[I=1:10]

Command qualifiers for POLYGON:

POLYGON /I=/J=/K=/L=/X=/Y=/Z=/T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,
Z, or T) to be used when evaluating the expression being plotted.

POLYGON/COORD_AX=

For the 2-D version of POLYGON, if "values" is omitted or is a constant then
there is no information on which to determine which is the axis of the vertices
within each polygon and which is the axes of successive polygons. The qualifier
/COORD_AX can be used to specify which is the axis of successive polygons.

If COORD_AX is not specified, and values is unspecified or a constant, Ferret
assumes that /COORD-AX is the second axis of the 2-dimensional coordinate
arrays and issues a message to this effect.

POLYGON/D=

Specifies the default data set to be used when evaluating the expression being
plotted.

POLYGON/FRAME

Causes the graphic image produced by the command to be captured as an animation
frame in the file specified by SET MOVIE. In general the FRAME command (p.
310) is more flexible and we recommend its use rather than this qualifier.

POLYGON/KEY

Displays a color key for the palette used in the color-filled plot. By default a key is
drawn unless the /LINE or /NOKEY qualifier is specified. To control the color key
position and labeling, see the command SHAKEY in the appendix, "Ferret
Enhancements to PPLUS" (p. 481).

POLYGON/LEVELS

Specifies the POLYGON levels or how the levels will be determined. If the
/LEVELS qualifier is omitted Ferret automatically selects reasonable POLYGON
levels.

See the chapter "Customizing Plots", section "Contouring" (p. 181) for examples
and more documentation on /LEVELS.

POLYGON/LINE

Outlines polygons specified by x and y vertices on a POLYGON plot. When /LINE
is specified the color key is omitted unless specifically requested via /KEY. The
line type

POLYGON/LINE/COLOR=/THICK=

Simple specification of outline characteristics f or polygon plots which specify an
outline line we control line thickness and color with commands such as

yes? POLYGON/LINE/COLOR=blue/THICK=2 {1,2,1}, {3,2,1}

This is equivalent to the (still supported) use of the /LINE qualifiers in

yes? POLYGON/LINE=10 {1,2,1}, {3,2,1} ! 4(blue) + 6*(2-1)

The available color names are Black, Red, Green, Blue, LightBlue, Purple, and
White (not case sensitive), corresponding to the /LINE values 1-6, respectively.
(/COLOR also accepts numerical values.) The line thickness may be 1, 2, or 3
corresponding to pixel thickness on the screen or corresponding to multiples of the
default line thickness on hard copy, however the color White is only available in
the default THICKNESS=1. The /DASH qualifier is not available for the outlines
of POLYGON but dashes can be drawn using

POLYGON x-vertices, y-vertices
PLOT/OVER/VS/DASH x-vertices, y-vertices

POLYGON/NOKEY

Suppresses the drawing of a color key for the palette used in the plot.

POLYGON/NOLABELS

Suppresses all plot labels.

POLYGON/OVERLAY

Causes the indicated POLYGON plot to be overlaid on the existing plot.

POLYGON/PALETTE=

Specifies a color palette (otherwise, a default rainbow palette is used). Try the Unix
command % Fpalette '*' to see available palettes. The file suffix *.spk is not
necessary when specifying a palette. See command PALETTE (p. 322) for more
information.

The /PALETTE qualifier changes the current palette for the duration of the plotting
command and then restores the previous palette. This behavior is not immediately
compatible with the /SET_UP qualifier. See the PALETTE command (p. 322) for
further discussion.

POLYGON/PATTERN=

Specifies a pattern file (otherwise, a default SOLID pattern is used). Try the Unix
command % Fpattern '*' to see available pattern files. The file suffix *.pat is
not necessary when specifying a pattern file. See command PATTERN (p. 323) for
more information.

POLYGON/SET_UP

Performs all the internal preparations required by program Ferret for a POLYGON
plot but does not actually render output. The command PPL can then be used to
make changes to the plot prior to producing output with the PPL FILLPOL
command. This permits plot customizations that are not possible with Ferret
command qualifiers. See the chapter "Customizing Plots" (p. 155).

POLYGON/TITLE=

Allows user to specify a plot title (enclosed in quotation marks). Without this
qualifier Ferret selects a title based on information about the expression(s). To
include font change and color_thickness specifications (e.g., @TI@C002) in the

title string, it is necessary either to CANCEL MODE ASCII or to include a leading
ESC (escape) character. See the chapter "Customizing Plots", section "Fonts" (p.
175).

yes? POLYGON/TITLE="title string" x-vertices, y-vertices, values

POLYGON/TRANSPOSE

Causes the horizontal and vertical axes to be interchanged. By default the X axis is
drawn horizontally on the plot and the Y and Z axes are drawn vertically. For Y-Z
plots the Z data axis is vertical.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in
order to achieve a horizontal T axis. See /HLIMITS (below) for further details. Use
/TRANSPOSE manually to reverse this effect.

POLYGON/HLIMITS=

Specifies the horizontal axis range and tic interval (otherwise, Ferret selects
reasonable values).

yes? POLYGON/HLIMITS=lo:hi:increment

The optional "increment" parameter determines tic mark spacing on the axis. If the
increment is negative, the axis will be reversed.

The /HLIMITS and /VLIMITS qualifiers will retain their "horizontal" and
"vertical" interpretations in the presence of the /TRANSPOSE qualifier. Thus, the
addition of /TRANSPOSE to a plotting command mandates the interchange of "H"
and "V" on the limits qualifiers.

POLYGON/VLIMITS=

Specifies the vertical axis range and tic interval. See /HLIMITS (above)

POLYGON/XLIMITS= /YLIMITS=

Note: XLIMITS and YLIMITS have been denigrated. Please use HLIMITS and
VLIMITS instead.

POLYGON/HLOG /VLOG

For 1-D plots only. /VLOG sets a vertical log axis, /HLOG sets a horizontal log
axis. If /VLIMITS or /HLIMITS is specified, they should be in data units (not
log10 axis units). If the axis is a depth axis, an inverse log axis is drawn.

See the notes under PLOT/VLOG/HLOG (p. 328)

Example:

yes? POLYGON/VLOG/VLIMITS=1:1000 xpts, ypts, my_ fcn

Ref Sec25. PPLUS

/RESET

Invokes PPLUS ("PLOT PLUS" written by Don Denbo), to execute a command or
commands.

yes? PPLUS !(also PPL); invokes PPLUS
interactively
 or

yes? PPL pplus_command !executes a single PPLUS
command
 or

yes? PPL/RESET !restores PPLUS to start-up
defaults

Example:

yes? PPL CROSS 1 !reference line through zero

Executes the PPLUS command "CROSS" and immediately returns control to
Ferret.

When PPLUS is invoked interactively the prompt is "PPL>" instead of the usual
"yes?". The EXIT command given at the "PPL>" prompt returns control to Ferret.

See the chapter "Customizing Plots" (p. 155) for more information on
Ferret/PPLUS interactions. A complete list of PPLUS commands is in PLOT PLUS
for Ferret User's Guide.

Command Qualifiers for PPLUS:

PPLUS/RESET

Restores PPLUS to start-up settings.

Ref Sec26. QUERY

Non-operating command (no result) checks the value of arguments to a GO script.
See p. 24 for examples.

Ref Sec27. QUIT

Alias for EXIT; also just Q. See p. 308

Ref Sec28. REPEAT

/I/J/K/L /X/Y/Z/T /ANIMATE/LOOP=

Repeats a command or group of commands over a range of values along an axis.

yes? REPEAT/q=lo:hi[:increment] COMMAND

The units of lo, hi, and increment are the units of the underlying grid axis if the
qualifier is X, Y, Z, or T. The qualifiers I, J, K, or L advance the repeat loop by
incrementing the indicated index (the default index increment is 1). Use SHOW
GRID to examine the axis units (if the units are not displayed try CANCEL MODE
LATITUDE, LONGITUDE, or CALENDAR as appropriate). To run the loop from
the highest value decreasing towards the lowest value, specify increment to be less
than zero. Any command or group of commands that can be specified at the
command line can also be given as an argument to REPEAT. If MODE VERIFY is
SET, the current loop index is displayed at the console as REPEAT executes. The
value of any symbols e.g. "($symbol)") that are used inside of REPEAT loops are
re-translated at each repetition of the loop.

Examples:

1) yes? REPEAT/L=1:240
CONTOUR/Y=30S:50N/X=130E:70W/LEV/FRAME sst
Produces a 240-frame movie of sea surface temperature.

2) yes? REPEAT/Z=300:0:-30 GO compz

Executes the command file compz.jnl at Z=300, Z=270, ..., Z=0.

3) yes? REPEAT/L=1:250:5 (GO set_up; CONTOUR sst;
FRAME)
Repeats three commands—execution of a GO script, CONTOUR, and
FRAME—for each timestep specified.

Command qualifiers for REPEAT:

REPEAT/I=/J=/K=/L=/X=/Y=/Z=/T=

Repeats the requested command(s) for the specified range of axis subscripts (I, J,
K, or L) or axis coordinates (X, Y, Z, or T). Note that when T axis limits are
specified as dates, the units of increment are hours.

REPEAT/ANIMATE[/LOOP=]

The /ANIMATE qualifier creates an animation on the fly. In a Ferret session,
display an animation with the command,

yes? REPEAT/ANIMATE[/LOOP=n]

to start an animation sequence. Given LOOP=n, the animation sequence will repeat
n times.

Example:

yes? set data coads_climatology

yes? repeat/l=1:12/animate/loop=5 (shade sst; go fland)

For a general discussion of animations, see the chapter Animations and GIF Images
(p. 147)

 NOTE: In order to properly display on SGI's, it is necessary to have backing store
enabled for the Xserver.

Ref Sec29. SAVE

The SAVE command is an alias for LIST/FORMAT=CDF (p.317). All qualifiers
and restrictions are identical to LIST/FORMAT=CDF.

Example:

yes? SAVE temp, salt

 is identical to

yes? LIST/FORMAT=CDF temp, salt

Notes:

1) Gaps in NetCDF outputs are filled with the missing value flag of the variable
being written. (See the chapter "Variables and Expressions", section "Missing value
flags," p. 60.) In the example below, if "temp" and "salt" share the same time axis
then the L=2:4 values of salt will be so filled.

yes? SAVE/FILE=test.cdf temp[L=1:5], salt[L=1], salt[L=5]

2) Transformations that compress an axis to a point produce results that Ferret
regards as time-independent. Thus, this 12-month average:

yes? SAVE/FILE=annual.cdf sst[L=1:12@AVE]

creates a NetCDF file with no time axis. It would not be possible to append the
average of the next 12 months as the next time step of this file. (See p. 230 for
examples on appending to NetCDF files.) However, a time location can be
inherited from another variable. In this example, we inherit the time axis of
"timestamp" in order to create a time axis in the NetCDF file.

yes? DEFINE AXIS/T="1-JUL-1980":"1-JUL-1985"/UNIT=year tannual

yes? DEFINE GRID/T=tannual gannual

yes? LET timestamp = T[G=gannual] * 0 !always 0

yes? LET sst_ave = sst[L=1:12@AVE] + timestamp

yes? SAVE/FILE=annual.cdf sst_ave[L=1]

yes? LET sst_ave = sst[L=13:24@AVE] + timestamp

yes? SAVE/FILE=annual.cdf/APPEND sst_ave[L=2]

.

. etc.

3) Background documentation about the definition and data set of origin for a
variable are saved in the "history" attribute of a variable when it is first saved in the
NetCDF file. If the definition of the variable is then changed, and more values are
inserted into the file using SAVE/APPEND, the modified definition will NOT be
documented in the output file. If the new definition changes the defining grid for
the variable the results will be unpredictable.

4) If you have created a data file with variables that you DEFINE, you will need
to cancel those previous definitions of the variables before you USE the new data
set. If you USE the data file while the DEFINE VARIABLE definition still exists
in Ferret then the one that you defined is the one that you will see with LIST and
other commands. Either CANCEL VARIABLE, or QUIT and start a new Ferret

session where you access your new data set.

. . .

yes? SAVE/FILE=annual.cdf/APPEND sst_ave[L=2]

. . .

yes? CANCEL VAR sst_ave

yes? USE annual.cdf

yes? SHOW DATA

Ref Sec30. SAY

Alias for MESSAGE/CONTINUE (p. 322)

Ref Sec31. SET

Sets features of the operating environment for program Ferret.

Generally, features may be toggled on and off with SET and CANCEL. Features
affected by SET may be examined with SHOW (see also CANCEL, p. 281, and
SHOW, p. 367).

Ref Sec31.1. SET AXIS

/MODULO/DEPTH

Indicates that an axis is to be treated as a modulo axis (the first point "wraps" and
follows the last point, as in a longitude axis).

yes? SET AXIS/MODULO x_ax

/DEPTH

Indicates that an axis is to be treated as a depth axis (graphics made with positive
down).

yes? SET AXIS/DEPTH z_ax

Ref Sec31.2. SET DATA_SET

/EZ /VARIABLE /TITLE /FORMAT /GRID /SKIP /COLUMNS /SAVE
/RESTORE /ORDER /TYPE /SWAP /REGULART/DELIMITED

SET DATA/EZ /COLUMNS /FORMAT /GRID /SKIP /TITLE /VARIABLE

Specifies ASCII, binary, NetCDF, GT, or TS-formatted data set(s) to be analyzed.

1) ASCII or binary:

yes? SET DATA/EZ[/qualifiers] data_set1, data_set2, …

 or equivalently, with alias FILE:

yes? FILE[/qualifiers] data_set1, data_set2, ...

2) NetCDF:

yes? SET DATA/FORMAT=cdf NetCDF_file

 or equivalently, with alias USE

yes? USE NetCDF_file

3) GT or TS-formatted:

yes? SET DATA data_set1, data_set2, ...

In the case of GT or TS-formatted files, an extension of .des is assumed. A
previously SET data set can be SET by its reference number, as shown by SHOW
DATA, rather than by name.

If a Unix filename includes a path (with slashes) then the full path plus name must
be enclosed in double quotation marks.

yes? use "/home/mydirectory/mydata/new_salinity.cdf"

If the filename begins with a numeric character, Ferret does not recognize the file,
but it can be specified using the Unix pathname, e.g.

yes? use "./123"

or

yes? file/var=a "./45N_180W.dat"

Note: Maximum simultaneous data sets: 30 (as of Ferret ver. 5.41). Use CANCEL
DATA if the limit is reached.

Command qualifiers for SET DATA_SET:

SET DATA/FORMAT=

Specifies the format of the data set(s) being SET. Allowable values for
"file_format" are "cdf", "delimited", "free", "stream", "unformatted", or a
FORTRAN format in quotation marks and parentheses.

yes? SET DATA/FORMAT=file_format [data_set_name_or_number]

Valid arguments for /FORMAT=

1) SET DATA/FORMAT=free (default for SET DATA/EZ)
To use the format "free" a file must consist entirely of numerical data separated by
commas, blanks or tabs.

2) SET DATA/FORMAT=cdf
If SET DATA/FORMAT=cdf (alias USE) is used, the data file must be in CDF
format. The default filename extension is ".cdf".

 Example:

yes? SET DATA/FORMAT=CDF my_netcdf

 or equivalently,

yes? USE my_netcdf

See the chapter "Data Set Basics", section "NetCDF data, p. 32."

Command qualifiers for SET DATA_SET/FORMAT=CDF:

SET DATA /FORMAT=CDF /ORDER=<permutation> /REGULART

The permutation argument contains information both about the order of the axes in
the file and the direction.

The order indicated through the /ORDER qualifier should always be exactly the
reverse of the order in which the dimensions of variables as revealed by the netCDF
ncdump -h command are declared. (This ambiguity reflects the linguistic
difference between "C ordering" and "FORTRAN ordering". The default X-Y-Z-T
ordering used in the COARDS standard and in Ferret documentation would be
referred to as T-Z-Y-X ordering if we used C terminology.)

Thus, to USE a file in Ferret in which the data on disk transposes the X and Y axes
we would specify

USE/ORDER=YX my_file.nc

To use a file in which the data were laid down in XZ "slabs", such as might occur
in model outpus we would specify

USE/ORDER=XZYT my_model.nc

To indicate that the coordinates along a particular axis are reversed from the "right
hand rule" ordering, for example a Y axis which runs north to south (not
uncommon in image data), we would precede that axis by a minus sign. For
example

USE/ORDER=X-Y my_flipped_images.nc

The minus sign should be applied to the axis position **after** transposition. Thus
if a file both transposed the XY axis ordering and used north-to-south ordering in
latitude one would access the file with

USE/ORDER=Y-X my_transposed_flipped_images.nc

NetCDF files, while in principle self-documenting, may be contain axis
ambiguities. For example, a file which is supposed to contain a time series, but
lacks units on the coordinate variable in the file may appear to be a line of data on
the X axis. The /ORDER qualifier can be used to resolve these ambiguities. For this
example, one would initialize the file with the command

 USE/ORDER=T my_ambiguous_time_series.nc

Notes for USE/ORDER:

a) Note that specifying USE/ORDER=XYZT is not always equivalent to specifying
default ordering. For example, if a netCDF file contained variables on an XYT grid,
the /ORDER=XYZT specifaction would tell Ferret to interpret it as an XYZ grid.

b) Also note, the /ORDER qualifier will be ignored if either the file is not netCDF,
or the file is netCDF but has an "enhanced" header (see
SAVE/HEADING=enhanced, p 319)

SET DATA/FORMAT=cdf/REGULART

Speeds initialization of large netCDF data sets with known regular time axes.
 When Ferret initializes a netCDF file (the SET DATA/FORMAT=cdf command or
the USE command alias), it checks for the attribute point_spacing = "even"
on the time axis. If found, Ferret knows that the coordinates are evenly spaced and
reads only the first and last coordinate on the axis to obtain a complete description.
If not found, Ferret must read the full list of coordinates -- a time-consuming
procedure for very large files. After reading the coordinates, Ferret determines if
they are regular. The /REGULART qualifier instructs Ferret to treat the time axis as
regular regardless of the presence or absence of a point_spacing attribute in the file,
speeding up the initialization time on files lacking point_spacing, but known to be
regular.

Note that when writing NetCDF files Ferret, by default, does NOT include the
point_spacing attribute. This is because Ferret's default file characteristic is to be
append-able, with no guarantees that the appended time steps will be regularly
spaced. For output files of fixed length with regular time steps it is advisable to use
the SAVE/RIGID qualifier. This allows Ferret to include the point_spacing="even"
attribute. If the files will be very large (too large for the full time range to be in
memory), then use the /RIGID/TLIMITS= qualifiers to specify the full, ultimate
fixed size and use SAVE/APPEND to insert data into the file piecemeal.

3) SET DATA/FORMAT=UNFORMATTED
To use the format "unformatted" the data must be floating point, binary,
FORTRAN-style records with all of the desired data beginning on 4-byte
boundaries. This option expects 4 bytes of record length information at the
beginning and again at the end of each record. The "-" designator (/VARIABLES)
can be used to skip over unwanted 4-byte quantities (variables) in each record. See
the chapter "Data Set Basics", section "Binary data" (p. 36).

4) SET DATA/FORMAT=FORTRAN format string
FORTRAN format specifications should be surrounded by parentheses and

enclosed in quotation marks.

 Example:

yes? SET DATA/EZ/FORMAT="(5X,F12.0)" my_data_set

 or equivalently,

yes? FILE/FORMAT="(5X,F12.0)" my_data_set

5) SET DATA/FORMAT=STREAM (Ferret version 3.1)
/FORMAT=stream is used to indicate that a file contains either unstructured binary
output (typical of C program output) or fixed-length records suitable for direct
access (all records of equal length, no record length information embedded in the
file). With caution it is also possible to read FORTRAN variable-length record
output. This sort of file is typically created by "quick and dirty" FORTRAN code
which uses the simplest FORTRAN OPEN statement and outputs entire variables
with a single WRITE statement.

This format specifier allows you to access any contiguous stretch of 4-byte values
from the file. The /SKIP=n qualifier specifies how many values should be skipped
at the file start. The /GRID=name qualifier specifies the grid onto which the data
should be read and therefore the number of values to be read from the file (the
number of points in the grid). Note that an attempt to read more data than the file
contains, or to read record length information, will result in a fatal FORTRAN
error on UNIX systems and will crash the Ferret program.

For multiple variables, use the /COLUMNS=n specifier to specify how many 4-
byte values separate each variable in the file. Each variable is assumed to represent
a contiguous stream of values within the file and all variables are assumed to
possess the same number of points. (A "poor man's method" is to create multiple
Unix soft links pointing to the same file and multiple SET DATA/EZ commands to
specify one variable from each link name.)

See the chapter "Data Set Basics", section "Binary data" (p. 36) for further
discussion and examples of binary types.

6) SET DATA/FORMAT=DELIMITED

SET DATA/FORMAT=DELIMITED[/DELIMITERS=][/TYPE=][/VAR=]
filename

Initializes a file of mixed numerical, string, and date fields. If the data types are not
specified the file will be analyzed automatically to determine data types. Using
delimited files, the number of variables that can be read from a single file is
increased from 20 to 100.

The alias COLUMNS stands for "SET DATA/FORMAT=DELIMITED"

 /DELIMITER - list of field delimiters. Default is tab or comma e.g.
/DELIM="X,\t,\,". Special characters include

● \b - blank
● \t - tab
● \n - newline
● \nnn - decimal value from ASCII table

 /TYPE is the list of data types of the fields. Field types may be any of

● "-" - skipped
● NUMERIC
● TEXT
● LATITUDE - e.g. 87S or 21.5N (interpreted as negative or positive,

respectively)
● LONGITUDE - e.g. 160W or 30E (interpreted as negative or positive,

respectively)
● DATE - e.g. mm/dd/yy or mm/dd/yyyy or yyyy-mm-dd or yyyymmdd -

value returned is days
● from 1-jan-1900 (consistent with the DAYS1900 function)
● EURODATE - e.g. dd/mm/yy or dd/mm/yyyy or yyyy-mm-dd TIME - e.g.

hh:mm or hh:mm:ss.s/

See the section on delimited files in the Data Set Basics chapter (p. 45) for
examples.

SET DATA/RESTORE

Restores the current default data set number that was saved with SET
DATA/SAVE.

This is useful in creating GO files that perform their function and then restore
Ferret to its previous state.

SET DATA/SAVE

Saves the current default data set number so it can be restored with SET
DATA/RESTORE.

This is useful in creating GO files that perform their function and then restore
Ferret to its previous state.

SET DATA/TITLE=

Associates a title with the data set.

yes? SET DATA/EZ/TITLE="title string" file_name
yes? USE/TITLE="pmel data set" "http://www.ferret.noaa.gov/cgi-
bin/nph-nc/data/coads_climatology.nc"

For EZ, NetCDF, or DODS datasets, set a title. This title appears on plotted
outputs at the top of the plot.

SET DATA/EZ

Accesses data from an ASCII or unformatted file that is not in a standardized
format (TMAP or NetCDF). The command FILE is an alias for SET DATA/EZ.

yes? SET DATA/EZ[/qualifiers] ASCII_or_binary_file

 or, equivalently,

yes? FILE[/qualifiers] ASCII_or_binary_file

Example:

yes? FILE/VARIABLE=my_var my_data.dat

See the chapter "Data Set Basics", section "ASCII data" (p. 40) for more
information and examples. Used on its own, SET DATA/EZ/VAR= uses a
default axis length which may be shorter than the size of your data. If this is the
case, use DEFINE AXIS and DEFINE GRID commands, and FILE/GRID= to read
your data, as discussed in the "Data Set Basics" chapter.

Command qualifiers for SET DATA_SET/EZ:

SET DATA/EZ/COLUMNS=n

Specifies the number of columns in the EZ data file.

By default the number of columns is assumed to be equal to the number of
variables (including "-"'s) specified by the /VARIABLES qualifier.

SET DATA/GRID=

Specifies the defining grid for the data in the data set. The argument can be the
name of a grid or the name of a variable that is already defined on the desired grid.

Example:

yes? SET DATA/EZ/GRID=sst[D=coads] snoopy

This is the mechanism by which the shape of the data (1D along T axis, 2D in the
XY plane, etc.) is specified. By default Ferret uses grid EZ, a line of up to 20480
points oriented along the X axis.

SET DATA/SKIP=n

Specifies the number of records to skip at the start of a data set before beginning to
read the data. By default, no records are skipped.

For ASCII files a "record" refers to a single line in the file (i.e., a newline
character). If the FORMAT statement contains slash characters the "data record"
may be multiple lines; the /SKIP qualifier is independent of this fact.

For FORTRAN-structured binary files the /SKIP argument refers to the number of
binary records to be skipped.

For unstructured (stream) binary files (e.g., output of a C program) the /SKIP
argument refers to the number of words (4-byte quantities) to skip before reading
begins.

SET DATA/SWAP

Stream files only. Change the byte ordering of numbers read from the file; big-
endian numbers are converted to little-endian numbers and vice versa.

SET DATA/TYPE=

Stream files only. Specify the data type of a set of variables in a stream file.
Available values and their corresponding types are:

Value FORTRAN C size in bytes

i1 INTEGER*1 char 1

i2 INTEGER*2 short 2

i4 INTEGER*4 int 4

r4 REAL*4 float 4

r8 REAL*8 double 8

yes? SET DATA/EZ/FORMAT=STREAM/TYPE=14,R4/VAR=V1,V2 foobar.dat

will read a file containing INTEGER*4 and REAL*4 numbers into the variables v1
and v2.

SET DATA/VARIABLES=

Names the variables of interest in the file. Default is v1.

yes? FILE/VARIABLES="var1,var2,..." file_name

Except in the case of /FORMAT=stream, Ferret assumes that successive values in
the data file represent successive variables. For example, if there are three variables
in a file, the first value represents the first variable, the second represents the
second variable, the third the third variable, and the fourth returns to representing
the first variable. The maximum number of variables allowed in a single free-
formatted data set is 20. See SET DATA/FORMAT=DELIMITED (p. 341) for
reading from a delimited file.

Variable names may be 1 to 24 characters (letters, digits, $, and _) beginning with a
letter. To indicate a column is not of interest use "-" for its name.

Example: (the third column of data will be ignored)

yes? SET DATA/VARIABLES="temp,salt,-,u,v" ocean_file.dat

SET DATA/ORDER= (Ferret version 3.11)

Specifies the order (ORDER=permutation) in which axes are to be read.

Examples:

yes? FILE/ORDER=XY sst !X varies fastest

yes? LIST/ORDER=YX sst !Y varies fastest

The "permutation" string may be any permutation of the letters X, Y, Z, and T. If
the /format=stream qualifier is used, the string may also contain V (for variable).
This allows variables to be "interleaved."

Ref Sec31.3. SET EXPRESSION

Specifies the default context expression. When Ferret's "action" commands (PLOT,
CONTOUR, SHADE, VECTOR, WIRE, etc.) are issued with no argument, the
default context expression is used. This is the expression last used as argument to
an action command, or it may be set explicitly with SET EXPRESSION. See the
chapter "Variables and Expressions", section "Expressions" (p. 61) for a full list of
action commands.

yes? SET EXPRESSION expr1 , expr2 , ...

Examples:

1) yes? SET EXPRESSION temp
Sets the current expression to "temp".

2) yes? SET EXPRESSION u , v , u^2 + v^2
Set the current expressions to "u , v , u^2 + v^2"

Ref Sec31.4. SET GRID

/RESTORE /SAVE

Specifies the default grid for abstract expressions. Type GO wire_frame_demo
at the Ferret prompt for an example of usage.

yes? SET GRID[/qualifier] [grid_or_variable_name]

Examples:

yes? SET GRID sst[D=coads]

yes? SET GRID ! use grid from last data accessed

See the chapter "Grids and Regions" (p. 119).

Command qualifiers for SET GRID:

SET GRID/RESTORE

Restores the current default grid last saved by SET GRID/SAVE. Useful together
with SET GRID/SAVE to create GO files that restore the state of Ferret when they
conclude.

SET GRID/SAVE

Saves the current default grid to be restored later. Useful together with SET
GRID/RESTORE to create GO files that restore the state of Ferret when they
conclude.

Ref Sec31.5. SET LIST

/APPEND /FILE /FORMAT /HEADING /PRECISION

Uses SET LIST to specify the default characteristics of listed output.

yes? SET LIST/qualifiers

The state of the list command may be examined with SHOW LIST. See command
CANCEL LIST (p. 283) and LIST (p. 315).

Command qualifiers for SET LIST:

SET LIST/APPEND

Specifies that by default the listed output is to be appended to a pre-existing file.
Cancel this state with CANCEL LIST/APPEND.

SET LIST/FILE=

Specifies a default file for the output of the LIST command.

yes? SET LIST/FILE=filename

The filename specified in this way is a default only. It will be used by the command

yes? LIST/FILE variable

 but will be ignored in

yes? LIST/FILE=snoopy.dat variable

Ferret generates a filename based on the data set, variable, and region if the
filename specified is "AUTO". The resulting name is often quite long but may be
shortened by following "AUTO" with a minus sign and the name(s) of the axes to
exclude from the filename.

Note: the region information is not used in automatic NetCDF output filenames.

Examples:

yes? SET LIST/FILE=AUTO

yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.X140W110WY2S2NL500.

yes? SET LIST/FILE=AUTO-XY

yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.L500.

SET LIST/FORMAT=

Specifies an output format for the LIST command. (When a FORTRAN format is
specified the row and column headings are omitted from the output.)

yes? SET LIST/FORMAT=option

yes? SET LIST/FORMAT !reactivate previous format

Options

FORTRAN format produces ASCII output

"UNFORMATTED" produces unformatted (binary) output

"CDF" produces NetCDF output

"GT" produces TMAP GT format

Examples:

1) yes? SET LIST/FORMAT=(1X,12F6.1)
Specifies a FORTRAN format (without row or column headings).

2) yes? SET LIST/FORMAT=UNFORMATTED
Specifies binary output. (FORTRAN variable record length record structure.)

Notes:

● When using GT format all variables named in a single LIST command will
be put into a single GT-formatted timestep.

● Very limited error checking will be done on FORTRAN formats.
● FORTRAN formats are reused as necessary to output full record.
● Latitude axes are listed south to north when /FORMAT is specified.

SET LIST/HEAD

Specifies that ASCII output is to be preceded by a heading that documents data set,
variable, and region. Cancel the heading with CANCEL LIST/HEAD.

SET LIST/PRECISION

Specifies the data precision (number of significant digits) of the output listings.
This qualifier has no effect when /FORMAT= is specified.

yes? SET LIST/PRECISION=#_of_digits

Ref Sec31.6. SET MEMORY

/SIZE

yes? SET MEMORY/SIZE=megawords

The command SET MEMORY provides control over how much "physical"
memory Ferret can use. (In reality the distinction between physical and virtual
memory is invisible to Ferret. The SET MEMORY command merely dictates how
much memory Ferret can attempt to allocate from the operating system.)

SET MEMORY controls only the size of Ferret's cache memory—memory used to
hold intermediate results from computations that are in progress and used to hold
the results of past file IO and computations for re-use. The default size of the
memory cache is 6.4 megawords (equivalently, 6.4×4=25.6 megabytes). Cache
memory size can be set larger or smaller than this figure.

Example:

yes? SET MEMORY/SIZE=8.2

Sets the size of Ferret's memory cache to 8.2 million (4-byte) words.

Notes:

● As a practical matter memory size should not normally be set larger than the
physical memory available on the system.

● The effect of SET MEMORY/SIZE= is identical to the "-memsize" qualifier
on the Ferret command line.

● See SET MODE DESPERATE (p. 351) and MEMORY USAGE (p. 223) in
this users guide for further instructions on setting the memory cache size
appropriately.

● Using the SET MEMORY command automatically resets the value of SET
MODE DESPERATE to a default that is consistent with the memory size.

● The effects of SET MEMORY/SIZE last only for the current Ferret session.
Exiting Ferret and restarting will reset the memory cache to its default size.

● If memory is severely limited on a system Ferret's default memory cache
size may be too large to permit execution. In this case use the "-memsize"
qualifier on the command line to specify a smaller cache.

Ref Sec31.7. SET MODE

/LAST

Specifies special operating modes or states for program Ferret.

yes? SET MODE[/LAST] mode_name[:argument]

Mode Description
Default
State

ASCII_FONT imposes PPLUS ASCII font types on plot labels set

CALENDAR uses date strings for T axis (vs. time step values) set

DEPTH_LABEL uses "DEPTH" as Z axis label set

DESPERATE attempts calculations too large for memory canceled

DIAGNOSTIC turns on internal program diagnostic output canceled

GUI unsupported; used in GUI development

IGNORE_ERROR continues command file after errors canceled

INTERPOLATE automatically interpolates data between planes canceled

JOURNAL records keyboard commands in a journal file set

LATIT_LABEL uses "N" "S" notation for labeling latitudes set

LONG_LABEL uses "E" "W" notation for labeling longitudes set

METAFILE captures graphics in GKS metafiles canceled

PPLLIST listed output from PPLUS is directed to the
named file

canceled

REFRESH refreshes graphics on systems lacking "backing
store"

canceled

SEGMENT utilizes GKS segment storage set

STUPID controls cache hits in memory (diagnostic) canceled

VERIFY displays each command file line as it is
executed

set

WAIT waits for carriage return after each plot canceled

Command qualifiers for SET MODE:

SET MODE/LAST

Resets mode to its last state.

yes? SET MODE/LAST mode_name

Example: (a command file that will not alter Ferret modes)

yes? SET MODE IGNORE_ERRORS ! 1st line of command
file

 .

 code which may encounter errors

 .

yes? SET MODE/LAST IGNORE_ERRORS ! last line of command
file

Ref Sec31.7.1. SET MODE ASCII_FONT

The SET MODE ASCII_FONT command causes program Ferret to precede plot
labels with the PPLUS font descriptor "@AS" (ASCII SIMPLEX font). This
assures that special characters (e.g., underscores) are faithfully reproduced. For
special plots it may be desirable to use other fonts (e.g., to obtain subscripts).
CANCEL MODE ASCII_FONT is for these cases.

 default state: set

Ref Sec31.7.2. SET MODE CALENDAR

SET MODE CALENDAR causes program Ferret to output times in date/time
format (instead of time axis time step values). This affects both plotted and listed
output.

This mode accepts an optional argument specifying the degree of precision for the
output date. If the argument is omitted the precision is unchanged from its last
value.

 default state: set (argument: minutes)

Arguments

SET MODE CALENDAR accepts the following arguments:

Argument Equivalent precision

SECONDS -6

MINUTES -5 (default)

HOURS -4

DAYS -3

MONTHS -2

YEARS -1

The argument is uniquely identified by the first two characters.

Example:

yes? SET MODE CALENDAR:DAYS

Causes times to be displayed in the format dd-mmm-yyyy.

When CALENDAR mode is canceled the "equivalent" in the table above
determines the precision of the time steps displayed exactly as in SET MODE
LONGITUDE.

Ref Sec31.7.3. SET MODE DEPTH_LABEL

SET MODE DEPTH_LABEL causes Ferret to label Z coordinate information in
the units of the Z axis. This affects both plotted and listed output. This mode
accepts an optional argument specifying the degree of precision for the output. If
the argument is omitted the precision is unchanged from its last value.

yes? SET MODE DEPTH:argument

 default state: set (argument: -4)

Arguments

See SET MODE LONG (p. 354) for a detailed description of precision control.

Ref Sec31.7.4. SET MODE DESPERATE

Ferret checks the size of the component data required for a calculation in advance
of performing the calculation. If the size of the component data exceeds the value
of the MODE DESPERATE argument Ferret attempts to perform the calculation in
pieces.

For example, the calculation "LIST/I=1/J=1 U[K=1:100,L=1:1000@AVE]"
requires 100*1000=100,000 points of component data although the result is only a
line of 100 points on the K axis. If 100,000 exceeds the current value of the MODE
DESPERATE argument Ferret splits this calculation into smaller sized chunks
along the K axis, say, K=1:50 in the first chunk and K=51:100 in the second.

Ferret is also sensitive to the performance penalties associated with reading data
from the disk. Splitting the calculation along axis of the stored data records can
require the data to be read many times in order to complete the calculation. Ferret
attempts to split calculations along efficient axes, and will split along the axis of
stored data only in desperation, if MODE DESPERATE is SET.

Example:

yes? SET MODE DESPERATE:5000

 default state: canceled (default argument: 80000)

Note: Use MODE DIAGNOSTIC to see when splitting is occurring.

Arguments

Use SHOW MEMORY/FREE to see the total memory available (as set with SET
MEMORY/SIZE).

Whenever the size of memory is set using SET MEMORY the MODE
DESPERATE argument is reset at one tenth of memory size. For most purposes
this will be an appropriate value. The user may at his discretion raise or lower the
MODE DESPERATE value based on the nature of a calculation. A complex
calculation, with many intermediate variables, may require a smaller value of
MODE DESPERATE to avoid an "insufficient memory" error. A simple
calculation, such as the averaging operation described above, will typically run
faster with a larger MODE DESPERATE value. The upper bound for the argument
is the size of memory. The lower bound is "memory block size."

Ref Sec31.7.5. SET MODE DIAGNOSTIC

SET MODE DIAGNOSTIC causes Ferret to display diagnostic information in real
time about its internal functioning. It is intended to help Ferret developers diagnose
performance problems by displaying what the Ferret memory management
subsystem is doing. The message "strip gathering on xxx axis" indicates that Ferret
has broken up a calculation into smaller pieces. Subsequent "strip" and "gathering"
messages indicate that sub-regions of the calculations are being processed and
brought together.

 default state: canceled

See the FAQ, How do I interpret the output of "SET MODE DIAGNOSTIC? for
help interpreting the output.

Ref Sec31.7.6. SET MODE IGNORE_ERROR

SET MODE IGNORE_ERROR causes Ferret to continue execution of a command
file despite errors encountered. (See command GO, p. 310.)

 default state: canceled

Ref Sec31.7.7. SET MODE INTERPOLATE

Note: The transformation @ITP provides the same functionality as MODE
INTERPOLATE with a greater level of control.

SET MODE INTERPOLATE affects the interpretation of world coordinate
specifiers (/X, /Y, /Z, and /T) in cases where the position is normal to the plane in
which the data is being examined. When this mode is SET and a world coordinate
is specified which does not lie exactly on a grid point, Ferret automatically
interpolates from the surrounding grid point values. When this mode is canceled,

http://ferret.pmel.noaa.gov/Ferret/FAQ/other/mode_diagnostic.html

the same world coordinate specification is shifted to the grid point of the grid box
that contained it before computations were made (see examples).

 default state: canceled

Example:

If the grid underlying the variable temp has points defined at Z=5 and at Z=15
(with the grid box boundary at Z=10) and data is requested at Z=12 then

yes? SET MODE INTERPOLATE

yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists temperature data in the X-Y plane obtained by interpolating between the Z=5
and Z=15 planes. Whereas,

yes? CANCEL MODE INTERPOLATE

yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists the data at Z=15. The output documentation always reflects the true location
used.

Ref Sec31.7.8. SET MODE LABELS

SET MODE LABELS restores the default behavior of labeling, if CANCEL
MODE LABELS has been issued. CANCEL MODE LABELS implements the
/NOLABELS qualifier for all plots after it has been set.

Ref Sec31.7.9. SET MODE LOGO

SET MODE LOGO turns on the Ferret logo (three lines at the upper right of plots),
if it has been turned off by CANCEL MODE LOGO

Ref Sec31.7.10. SET MODE JOURNAL

SET MODE JOURNAL causes Ferret to record all commands issued in a journal
file. Output echoed to this file may be turned on and off via mode JOURNAL at
any time.

 default state: set

Example:

yes? SET MODE JOURNAL:my_journal_file.jnl

The optional argument to MODE JOURNAL specifies the name of the output
journal file—with no argument, the default name "ferret.jnl" is used. Journal files
for successive Ferret sessions are handled by version number. See the chapter
"Computing Environment", section "Output file naming" (p. 227).

Ref Sec31.7.11. SET MODE LATIT_LABEL

SET MODE LATIT_LABEL causes Ferret to output latitude coordinate
information in degrees N/S format (instead of the internal latitude coordinate). This
affects both plotted and listed output.

This mode accepts an optional argument specifying the degree of precision for the
output. If the argument is omitted the precision is unchanged from its last value.

Example:

yes? SET MODE LAT:2

 default state: set (argument: 1)

Arguments

See command SET MODE LONG (p. 354) for a detailed description of precision
control.

Ref Sec31.7.12. SET MODE LONG_LABEL

SET MODE LONG_LABEL causes Ferret to output longitude coordinate
information in degrees E/W format (instead of the internal longitude coordinate).
This will affect both plotted and listed output.

This mode accepts an optional argument specifying the degree of precision for the
output. If the argument is omitted the precision will be unchanged from its last
value.

Example:

yes? SET MODE LONG:2

 default state: set (argument: 1)

Arguments

The argument of SET MODE LONG is an integer specifying the precision. If the
argument is positive or zero it specifies the maximum number of decimal places to
display. If the argument is negative it specifies the maximum number of significant
digits to display.

Examples:

Suppose the longitude to be displayed is 165.23W. Then

yes? SET MODE LONG:1 will produce 165.2W

yes? SET MODE LONG:-3 will produce 165W

When LONG mode is canceled the argument still determines the output precision.

Ref Sec31.7.13. SET MODE METAFILE

SET MODE METAFILE causes Ferret to capture all graphics in metafiles. These
metafiles can later be routed to various devices to obtain hard copy output.

The optional argument to MODE METAFILE specifies the name of the output
metafile—with no argument, the default name "metafile.plt" is used. Multiple
output files (i.e., successive plots) are handled by version number. See the chapter
"Computing Environment", section "Output file naming" (p. 227).

See the chapter "Computing Environment", section "Hard copy" (p. 224) for details
on generating hard copy.

Example:

yes? SET MODE METAFILE:june_sst.plt

 default state: canceled (default argument when set: "metafile.plt")

Ref Sec31.7.14. SET MODE POLISH

The SET MODE POLISH command causes program Ferret to expect algebraic
expressions to be entered in Reverse Polish order. *** note: Removed in version
4.5 ***

Ref Sec31.7.15. SET MODE PPLLIST

Directs listed output from PPLUS commands (e.g., PPL LIST LABS) to the
specified file. This mode is useful for creating scripts that customize plots. The user
can specify the name of the output file by giving it as an argument, otherwise file
name "ppllist.out" is assigned.

Example:

yes? SET MODE PPLLIST:plot_symbols.txt

yes? PPL LISTSYM

yes? SPAWN grep "WIDTH" plot_symbols.txt

 default state: canceled

Ref Sec31.7.16. SET MODE REFRESH

The SET MODE REFRESH command causes Ferret to update windows following
"occlusion" events on X-servers that lack a backing store (SGI workstations have
been a case in point).

 default state: canceled (except on SGI systems)

Ref Sec31.7.17. SET MODE SEGMENTS

SET MODE SEGMENTS causes Ferret to utilize GKS segments ("GKS" is the
Graphical Kernel System—an international graphics standard). On some systems
MODE SEGMENTS may be necessary to update windows following "occlusion"
events or to resize window with the mouse.

Segments, however, make heavy demands on the system's virtual memory. If Ferret
crashes during graphics output due to insufficient virtual memory try CANCEL
MODE SEGMENTS.

 default state: set

Ref Sec31.7.18. SET MODE STUPID

Note: MODE STUPID is included for diagnostic purposes only.

SET MODE STUPID controls the ability of Ferret to reuse results left in memory
from previous commands. It also effects its ability to reuse intermediate variables
that are referenced multiple times during complex calculations. Given with no
argument

yes? SET MODE STUPID

causes Ferret to forget data cached in memory. The result is that all requests for
variables are read from disk and no intermediate calculations are reused. The
program will be significantly slower as a result.

A lesser degree of cache limitation occurs with the command

yes? SET MODE STUPID: weak_cache

which causes Ferret to revert to the cache access strategy that it used previous to
Ferret version 5.0. In this mode cache hits are unreliable unless the region of
interest is fully specified. (Unspecified limits will typically default to the full range
of the relevant axis.)

 default state: canceled

Ref Sec31.7.19. SET MODE VERIFY

SET MODE VERIFY causes commands from a command file ("GO file") to be
displayed on the screen as they are executed. Note that if MODE VERIFY is
canceled, loop counting in the REPEAT command is turned off.

 default state: SET, argument "default"

Note: Many GO files begin with CANCEL MODE VERIFY to inhibit output and
end with SET MODE/LAST VERIFY to restore the previous state. Only if an error
or interrupt occurs during the execution of such a command file will the state of
MODE VERIFY be affected.

SET MODE VERIFY can accept arguments to further refine control over command
echoing.

yes? SET MODE VERIFY: DEFAULT

● This will be the default state if no argument is given
● Ferret echos commands taken from GO scripts
● Ferret echos commands in which symbol substitutions occur or in which

embedded expressions are evaluated

yes? SET MODE VERIFY: ALL

● In addition to the cases above Ferret also displays the individual commands
that are generated by repeat loops and semicolon-separated command
groups

● Ferret displays a REPEAT loop counter ("!-> REPEAT: ...")

yes? SET MODE VERIFY: ALWAYS

● Echoing behavior is the same as argument ALL but ALWAYS, in addition,
causes CANCEL MODE VERIFY to be ignored when it is encountered in a
GO file. This functionality is useful when debugging GO scripts. Entering
CANCEL MODE VERIFY or SET MODE VERIFY:DEFAULT from the
command line will cancel this state.

Ref Sec31.7.20. SET MODE WAIT

SET MODE WAIT causes Ferret to wait for a keyboard keystroke from the user
after each plotted output is completed. This is useful on graphics terminals that do
not have a separate graphics plane; on these terminals SET MODE WAIT prevents
the graphical output from being wiped off the screen until the user is ready to
proceed.

 default state: canceled

Ref Sec31.8. SET MOVIE

/COMPRESS /FILE /LASER /START

Designates a file (specified or default) for storing graphical images as movie frames
(in HDF Raster-8 format). Note that the FRAME/FILE=filename qualifier is
generally preferable to the SET MOVIE command, as it is simpler and more
flexible. See the chapter "Animations and GIF Images (p. 147) for further
explanation.

yes? SET MOVIE[/qualifiers]

Command qualifiers for SET MOVIE:

SET MOVIE/COMPRESS=

Turns on or off compression of HDF frames using run length compression.

yes? SET MOVIE/COMPRESS=OFF

The allowed arguments are "on" and "off" —CANCEL MOVIE does not affect this
qualifier.

 default state: on

SET MOVIE/FILE

Specify an output file to receive movie frames.

!specify a new filename
yes? SET MOVIE/FILE=filename

 or

!reactivate a previously specified filename after CANCEL MOVIE
yes? SET MOVIE/FILE

The default movie filename extension is ".mgm"

The default movie filename is "ferret.mgm"

SET MOVIE/LASER

Output to Panasonic OMDR. Valid only on older VAX/VMS systems.

SET MOVIE/START

Only valid for use on older VAX/VMS systems with the Panasonic Optical
Memory Disk Recorder (OMDR). Only valid with /LASER qualifier.

Ref Sec31.9. SET REGION

/I/J/K/L /X/Y/Z/T /DI/DJ/DK/DL /DX/DY/DZ/DT

Specifies the default space-time region for the evaluation of expressions.

yes? SET REGION[/qualifiers] [reg_name]

See the chapter "Grids and Regions", section "Regions" (p. 135) for further
information.

Examples:

1) yes? SET REGION/X=140E
Sets X axis position in the default context.

2) yes? SET REGION/@N !N specifies X and Y but not
Z or T
Sets only X and Y in the default context (since X and Y are defined in region N but
Z and T are not).

3) yes? SET REGION N
Sets ALL AXES in the default region to be exactly the same as region N. Since Z
and T are undefined in region N they will be set undefined in the default context.

4) yes? SET REGION/@N/Z=50:250
Sets X and Y in the default region to be exactly the same as region N and then sets
Z to the range 50 to 250.

5) yes? SET REGION/DZ=-5
Set the region along the Z axis to be 5 units less than its current value.

6) yes? SET REGION/DJ=-10:10
Increases the current vertical axis range by 10 units on either end of the axis.

Command qualifiers for SET REGION:

SET REGION/I=/J=/K=/L=/X=/Y=/Z=/T=
Sets region bounds for specified axis subscript (I, J, K, or L) or axis coordinates (X,
Y, Z, or T). See examples above.

SET REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=
Modifies current region information by the specified increment of an axis subscript
(I, J, K, or L) or axis coordinate (X, Y, Z, or T). See examples above. Syntax:
/D*=val, or /D*=lo:hi.

Ref Sec31.10. SET VARIABLE

/BAD /GRID /TITLE /UNIT /DATASET/NAME

Modifies attributes of a variable defined by DEFINE VARIABLE or SET
DATA/EZ. This command permits variables within a single EZ data set to be
defined on different grids and it allows the titles and units to be superseded for the
duration of a session, only, on NetCDF and GT data sets.

yes? SET VARIABLE/qualifiers variable_name

Parameters

The variable name can be a simple name or a name qualified by a data set.

Example:

yes? SET VAR/UNITS="CM" WIDTH[D=snoopy]

Command qualifiers for SET VARIABLE:

SET VARIABLE/BAD=
Designates a value to be used as the missing data flag. The qualifier is applicable to
EZ data set variables and to NetCDF data sets. The bad value which is specified
will be used in subsequent outputs and calculations involving this variable. It
applies only for the duration of the current Ferret session. It does not alter the data
files. It is not applicable to variables defined with DEFINE VARIABLE.

When the command SET VARIABLE/BAD= is be used to set one of the two
 missing value flags of a file variable, the bad value which is specified will be used
in subsequent outputs and calculations involving this variable

Ferret is aware of up to two missing value flags for each variable in a netCDF file.
Under most circumstances, netCDF file variables use only a single flag. With a
command like

SET VARIABLE/BAD=-999 my_file_var

you can specify -999 as an additional missing value flag. It is this value which will
be present in all subsequent SAVEs to files and calculations.

Note that if the netCDF file contains two distinct flag values specified by the
netCDF attributes "missing_value" and "_FillValue", then this command will
migrate the value specified by missing_value to the position previously occupied
by _FillValue and replace the one specified by missing_value. Thus a double usage
of this command allows you to control both flags. You can use the command
"SHOW DATA/VARIABLES" to see both bad value flags.

SET VARIABLE/GRID=
Sets the defining grid for a variable in an EZ data set. The argument may be an
expression.

Example:

yes? SET VARIABLE/GRID=my_grid width[D=snoopy]

This is the mechanism by which the shape of the data (1D along T axis, 2D in the
XY plane, etc.) is specified. By default Ferret will use grid EZ, a line of up to

20480 points oriented along the X axis. The qualifier is not applicable to variables
defined with DEFINE VARIABLE.

SET VARIABLE/NAME=
This is effectively a RENAME command -- applies to all classes of variables (but
not pseudo-variables). Useful for "repairing" variables whose definitions are
inadequate as-is but whose variable names are significant. A common application
of this is in creating output netCDF files in which contain modified versions of
variables from input files.

yes? SET VARIABLE/NAME=new old

Example:

yes? SET VARIABLE/NAME=north_vel V[d=1]

SET VARIABLE/TITLE=
Associates a title with the variable. This title appears on plotted outputs and
listings. The qualifier is applicable to all variables.

yes? SET VARIABLE/TITLE="title string" var_name

SET VARIABLE/UNITS=
Associates units with the variable. The units appear on plotted outputs and listings.
The qualifier is applicable to all variables.

yes? SET VARIABLE/UNITS="units string" var_name

Ref Sec31.11. SET VIEWPORT

Sets the rectangular region within the output window where output will be drawn.

yes? SET VIEWPORT view_name

Issuing the command SET VIEWPORT is best thought of as entering "viewport
mode." While in viewport mode all previously drawn viewports remain on the
screen until explicitly cleared with either SET WINDOW/CLEAR or CANCEL
VIEWPORT. If multiple plots are drawn in a single viewport without the use of
/OVERLAY the current plot will erase and replace the previous one; the graphics
in other viewports will be affected only if the viewports overlap. If viewports
overlap the most recently drawn graphics will always lie on top, possibly obscuring
what is underneath. By default, the state of "viewport mode" is canceled.

Pre-defined viewports exist for dividing the window into four quadrants and for
dividing the window in half horizontally and vertically. See the chapter
"Customizing Plots", section "Pre-defined viewports" (p. 178) for a list.

Ref Sec31.12. SET WINDOW

/ASPECT /CLEAR /LOCATION /NEW /SIZE

Creates, resizes, reshapes or moves graphics output windows.

yes? SET WINDOW[/qualifiers] [window_number]

Note: Multiple windows may be simultaneously viewable but only a single window
 receives output at any time.

See commands SHOW WINDOWS (p. 376) and CANCEL WINDOW (p. 287) for
additional information.

Examples:

1) yes? SET WINDOW/NEW
Creates a new output window and sends subsequent graphics to it.

2) yes? SET WINDOW 3
Sends subsequent graphics to window 3.

3) yes? SET WINDOW/SIZE=.5
Resizes current window to ½ of full.

4) yes? SET WINDOW/ASPECT=.5
Reshapes current window with Y/X equal to 1:2. The effect of this command is not
seen until a plot is sent to the window.

5) yes? SET WINDOW/LOCATION=0,.5
Puts the lower left corner of the current window at the left border of the display and
half way up it.

Command qualifiers for SET WINDOW:

SET WINDOW/ASPECT
Sets the aspect ratio of the output window and hard copy. Note the new ratio
doesn't take effect until a plot command is issued in the window.

Examples:

1) yes? SET WINDOW/ASPECT=y_over_x n
Sets the overall aspect ratio of window n.

2) yes? SET WINDOW/ASPECT=y_over_x
Sets the overall aspect ratio of the current window.

3) yes? SET WINDOW/ASPECT=y_over_x:AXIS
Sets the axis length aspect ratio of the current window.

The total size (area) of the output window is not changed.

The default value for the overall window ratio is y/x = 8.8/10.2 ~ 0.86.

The default value for the axis length ratio is y/x = 6/8 = 0.75.

Use PPLUS/RESET or SET WINDOW/ASPECT=.75:AXIS to restore defaults.

The aspect ratio specified is a default for future SET WINDOW commands

The origin (lower left) is restored to its default values: 1.2, 1.4

When using "SET WINDOW n" to return to a previous window that differs from
the current window in aspect ratio, it is necessary to re-specify its aspect ratio with
/ASPECT, otherwise PPLUS will not be properly reset. If you return to a previous
window, you cannot expect to make an overlay on the plot that is there. The
PPLUS settings for axis lengths and other properties of the plot will have been
overwritten.

SET WINDOW/CLEAR
Clears the image(s) in the current or specified window. Useful with viewports.

SET WINDOW/LOCATION
Sets the location for the lower left corner of named (or current) window. The
coordinates x and y must be values between 0 and 1 and refer to distances from the
lower left corner of the display screen (total length and width of which are each 1).

yes? SET WINDOW/LOCATION=x,y [window_number]

SET WINDOW/NEW
Causes future graphical output to be directed to a new window. The window will be
created at the next graphics output.

yes? SET WINDOW/NEW

SET WINDOW/SIZE
Resizes a window to r times the area of the standard window. (The length of the
sides changes by the square root of r.) If the window number is omitted the
command will resize the currently active window. (The default window size is 0.7.)

yes? SET WINDOW/SIZE=r [window_number]

The actual size of the window is reset to fit on the output device.

Ref Sec32. SHADE

/I/J/K/L /X/Y/Z/T /D /FRAME /KEY /LEVELS /LINE /NOAXIS /NOKEY
/NOLABELS /OVERLAY /PALETTE /PATTERN /SET_UP /TITLE
/TRANSPOSE /HLIMITS/ /VLIMITS /AXES

Produces a shaded (rectangular raster) plot of a 2-D field. By default a color key is
drawn and contour lines are not drawn.

SHADE[/qualifiers] expression

In a curvilinear coordinate system (map projections)

SHADE [/qualifiers] expression, xcoords, ycoords (see p. 187)

Parameters

The expression may be any valid expression. See the chapter "Variables and
Expressions", section "Expressions" (p. 61) for a definition of valid expressions.
The expression will be inferred from the current context if omitted from the
command line. Multiple expressions are not permitted in a single SHADE
command.

Command qualifiers for SHADE:

SHADE/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,
Z, or T) to be used when evaluating the expression being plotted.

SHADE/D=
Specifies the default data set to be used when evaluating the expression being
plotted.

SHADE/FRAME
Causes the graphic image produced by the command to be captured as an animation

frame in the file specified by SET MOVIE. In general the FRAME command (p.
310) is more flexible and we recommend its use rather than this qualifier.

SHADE/KEY
Displays a color key for the palette used in the shaded plot. By default a key is
drawn unless the /LINE or /NOKEY qualifier is specified. To control the color key
position and labeling, see the command SHAKEY in the appendix, "Ferret
Enhancements to PPLUS" (p. 481).

SHADE/KEY=CONTINUOUS
Chooses a continous color key for the palette used in a shade plot, without lines
separating the colors. This option is particularly good for plots having many levels.

SHADE/LEVELS
Specifies the SHADE levels or how the levels will be determined. If the /LEVELS
qualifier is omitted Ferret automatically selects reasonable SHADE levels.

See the chapter "Customizing Plots", section "Contouring" (p. 181) for examples
and more documentation on /LEVELS and color_thickness indices, and also the
demonstration "custom_contour_demo.jnl".

SHADE/LINE
Overlays contour lines on a shaded plot. When /LINE is specified the color key is
omitted unless specifically requested via /KEY.

SHADE/NOKEY
Suppresses the drawing of a color key for the palette used in the plot.

SHADE/NOAXIS
Suppresses all axis lines, tics and labeling so that no box appears surrounding the
contour plot. This is especially useful for map projection plots.

SHADE/NOLABELS
Suppresses all plot labels.

SHADE/OVERLAY
Causes the indicated shaded plot to be overlaid on the existing plot.

Note (SHADE/OVERLAY with time axes):
A restriction in PPLUS requires that if time is an axis of the shaded plot, the
overlaid variable must share the same time axis encoding as the base plot variable.
If this condition is not met, you may find that the overlaid shaded plot fails to be
drawn. The solution is to use the Ferret regridding capability to regrid the base plot
variable and the overlaid plot variable onto the same time axis. See the section on
overlaying with a time axis (p. 160).

SHADE/PALLETTE=
Specifies a color palette (otherwise, a default rainbow palette is used). Try the Unix
command % Fpalette '*' to see available palettes. The file suffix *.spk is not
necessary when specifying a palette. See command PALETTE (p. 322) for more
information.

Yes? SHADE/PALETTE=land_sea rose

The /PALETTE qualifier changes the current palette for the duration of the plotting
command and then restores the previous palette. This behavior is not immediately
compatible with the /SET_UP qualifier. See the PALETTE (p. 322) command for
further discussion.

SHADE/PATTERN=
Specifies a pattern file (otherwise, the current default pattern specification is used).
The file suffix *.pat is not necessary when specifying a pattern. Try the Unix
command % Fpattern '*' to see available patterns. See command PATTERN
(p. 323) for more information.

SHADE/SET_UP
Performs all the internal preparations required by program Ferret for a shaded plot
but does not actually render output. The command PPL can then be used to make
changes to the plot prior to producing output with the PPL SHADE command. This
permits plot customizations that are not possible with Ferret command qualifiers.
See the chapter "Customizing Plots" (p. 155).

SHADE/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this

qualifier Ferret selects a title based on information about the expression(s). To
include font change and color_thickness specifications (e.g., @TI@C002) in the
title string, it is necessary either to CANCEL MODE ASCII or to include a leading
ESC (escape) character. See the chapter "Customizing Plots", section "Fonts" (p.
175).

yes? SHADE/TITLE="title string" expression

SHADE/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is
drawn horizontally on the plot and the Y and Z axes are drawn vertically. For Y-Z
plots the Z data axis is vertical.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in
order to achieve a horizontal T axis. See /HLIMITS (below) for further details. Use
/TRANSPOSE manually to reverse this effect.

SHADE/HLIMITS=
Specifies the horizontal axis range and tic interval (otherwise, Ferret selects
reasonable values).

yes? SHADE/HLIMITS=lo:hi:increment

The optional "increment" parameter determines tic mark spacing on the axis. If the
increment is negative, the axis will be reversed.

SHADE/VLIMITS=
Specifies the vertical axis range and tic interval. See /HLIMITS (above)

SHADE/XLIMITS=/YLIMITS=
Note: XLIMITS and YLIMITS have been denigrated. Please use HLIMITS and
VLIMITS instead.

Ref Sec33. SHOW

/ALL

Displays program states and stored values.

Command qualifiers for SHOW:

SHOW/ALL
Executes all SHOW options. This command gives a complete description of the
current state, including information about region, grids, axes, variables, and the
state of various modes (default or set with SET MODE).

yes? SHOW/ALL

Arguments:

The names of variables, data sets, or other definitions can be specified using
wildcards. The * wildcard matches any number of characters in the name; the
question wildcard matches exactly one character.

Ref Sec33.1. SHOW ALIAS

Lists all command aliases and the full command names for which they stand, or,
with an argument, shows a specified command alias.

yes? SHOW ALIAS [alias_name]

Ref Sec33.2. SHOW AXIS

Shows a basic description of the named axis.

SHOW AXIS[/qualifiers] axis_name

A typical output appears below. The columns are:

name name of axis (used also in DEFINE AXIS and DEFINE GRID)

pts number of points on axis; "r" or "i" for regular or irregular spacing, "m"
if the axis is "modulo" (repeating)

axis the orientation of the axis; "(-)" after the "r" or "i" on a depth axis
indicates increasing downward

start position of first point on the axis

end position of last point on the axis

yes? SHOW AXIS PSXT
name axis # pts start end
PSXT LONGITUDE 160 r 130.5E 70.5W

yes? SHOW AXIS/I=1:2 COADSX
name axis # pts start end
COADSX LONGITUDE 180mr 21E
 19E(379)
 I X XBOX XBOXLO
 1> 21E 2 20E
 2> 23E 2 22E

Command qualifiers for SHOW AXIS:

SHOW AXIS/I=/J=/K=/L=/X=/Y=/Z=/T=
Displays the coordinates and grid box sizes for the specified axis. Optionally, low
and high limits and a delta value may be specified to restrict the range of values
displayed.

yes? SHOW AXIS/X[=lo:hi:delta] axis-name

Example:

yes? SHOW AXIS/L=1:12:3 my_custom_time_axis

SHOW AXIS/ALL
Show a brief summary of all axes defined.

yes? SHOW AXIS/ALL

Ref Sec33.3. SHOW COMMANDS

/ALL

Displays commands, subcommands, and qualifiers recognized by program Ferret.
This command does not display aliases; use SHOW ALIAS.

SHOW COMMAND [command_name or partial_command]

Note: This is the most reliable way to view command qualifiers. The output of this
command will be current even when this manual is out of date.

Examples:

yes? SHOW COMMAND S ! show all commands beginning with "S"

yes? SHOW COMMAND ! show all commands

yes? SHOW COMMAND PLOT ! shows command PLOT and all its
qualifiers

Ref Sec33.4. SHOW DATA_SET

/ALL /BRIEF /FILES /FULL /VARIABLE

Shows information about the data sets which have been SET and indicates the
current default data set. By default the variables and their subscript ranges are also
listed.

yes? SHOW DATA[/qualifiers] [set_name_or_number1,set2,...]

If no data set name or number is specified then all SET data sets are shown.

Command qualifiers for SHOW DATA_SET:

SHOW DATA/ALL
This qualifier has no effect on this command; it exists for compatibility reasons.

SHOW DATA/BRIEF
Shows only the names of the data sets; does not describe the data contained in
them.

SHOW DATA/FILES
Displays the names of the data files for this data set and the ranges of time steps
contained in each. Output is formatted as date strings or as time step values
depending on the state of MODE CALENDAR.

SHOW DATA/FULL
Equivalent to /VARIABLES and /FILES used together.

SHOW DATA/VARIABLES
In addition to the information given by the SHOW DATA command with no
qualifiers, this query also provides the grid name and world coordinate limits for
each variable in the data set.

Example: SHOW DATA

SHOW DATA produces a listing similar to the one below. The output begins with
the descriptor file name (for TMAP-formatted data) and data set title. The columns
I, J, K, and L give the subscript limits for each variable with respect to its defining
grid (use SHOW DATA/FULL and SHOW GRID variable_name for more
information).

yes? SET DATA levitus_climatology

yes? SHOW DATA

 currently SET data sets:

 1> /home/e1/tmap/fer_dsets/descr/levitus_climatology.des
 (default)

 name title I J K
 L

 TEMP TEMPERATURE 1:360 1:180 1:20
 1:1

 SALT SALINITY 1:360 1:180 1:20
 1:1

Ref Sec33.5. SHOW EXPRESSION

Shows the current expression(s) implied or set with SET EXPRESSION. If not
explicitly set with this command, the default current context expression is the
argument of the most recent "action" command (PLOT, SHADE, CONTOUR,
VECTOR, WIRE, etc.) See the chapter "Variables and Expressions", section
"Expressions" (p. 61) for an explanation and list of action commands.

yes? SHOW EXPRESSION

Ref Sec33.6. SHOW FUNCTION

/ALL /BRIEF /EXTERNAL /INTERNAL /DETAILS

Shows a complete list of the functions defined in Ferret including descriptions of
the function arguments.

yes? SHOW FUNCTION[/qualifiers] [function_name]

If no qualifier or function name is given then all functions are listed. SHOW
FUNCTION will accept name templates such as

yes? SHOW FUNCTION *day*
 DAYS1900 (day, month, year)
 days elapsed since Jan. 1, 1900

Parameters

The parameter(s) may be the name of a function, with * replacing part of the string
as above.

Command qualifiers for SHOW FUNCTION:

SHOW FUNCTION/ALL
List all functions defined

SHOW FUNCTION/BRIEF
List the functions and their arguments in brief form; no function or argument
descriptions.

SHOSHOW FUNCTION/EXTERNAL
List only the available Ferret external functions (p. 229).

SHOW FUNCTION/INTERNAL
List only the internally defined Ferret functions.

SHOW FUNCTION/DETAILS
Lists the axis inheritance for grid-changing functions

Example:.SHOW FUNCTION/DETAILS

yes? SHOW FUNCTION/DETAILS SAMPLEXY
SAMPLEXY(DAT_TO_SAMPLE,XPTS,YPTS)
 Returns data sampled at a set of (X,Y) points, using linear
interpolation
 Grid of result:
 X: ABSTRACT (result will occupy indices 1...N)
 Y: NORMAL (no axis)
 Z: inherited from argument(s)
 T: inherited from argument(s)
 DAT_TO_SAMPLE: variable (x,y,z,t) to sample
 Influence on output grid:
 X: no influence (indicate argument limits with "[]")
 Y: no influence (indicate argument limits with "[]")
 Z: passed to result grid
 T: passed to result grid
 XPTS: X indices of sample points
 Influence on output grid:
 X: no influence (indicate argument limits with "[]")
 Y: no influence (indicate argument limits with "[]")
 Z: no influence (indicate argument limits with "[]")
 T: no influence (indicate argument limits with "[]")
 YPTS: Y indices of sample points
 Influence on output grid:
 X: no influence (indicate argument limits with "[]")
 Y: no influence (indicate argument limits with "[]")
 Z: no influence (indicate argument limits with "[]")
 T: no influence (indicate argument limits with "[]")

Ref Sec33.7. SHOW GRID

/I/J/K/L /X/Y/Z/T /ALL /DYNAMIC

Shows the name and axis limits of a grid.

yes? SHOW GRID[/qualifiers] [var_or_grid1 var_or_grid2 ...]

Example:

(See command SHOW AXIS, p. 367, for an explanation of the columns.)

yes? SET DATA levitus_climatology

yes? SHOW GRID salt

 GRID GLEVITR1

 name axis # pts start end

 XAXLEVITR LONGITUDE 360mr 20.5E
 19.5E(379.5)

 YAXLEVITR LATITUDE 180 r 89.5S 89.5N

 ZAXLEVITR DEPTH(-) 20 i 0m 5000m

Parameters

The parameter(s) may be the name of one or more grid(s) or variable(s). If no
parameter is given SHOW GRID displays the grid of the last variable accessed.
This is the only mechanism to display the grid of an algebraic expression.

Note: To apply SHOW GRID to an algebraic expression it is necessary for Ferret
to have evaluated the expression in a previous command. The command LOAD is
useful for this purpose in some circumstances.

Command qualifiers for SHOW GRID:

SHOW GRID/I=/J=/K=/L=/X=/Y=/Z=/T=
Displays the coordinates and grid box sizes for the specified axis. Optionally, low
and high limits and a delta value may be specified to restrict the range of values
displayed. The argument may be an expression.

yes? SHOW GRID/X[=lo:hi:delta] [variable_or_grid]

Example:

yes? SHOW GRID/L=1:12:3 sst[coads_climatology]

SHOW GRID/ALL
Shows the names only of all grids defined.

yes? SHOW GRID/ALL

SHOW GRID/DYNAMIC
Shows the names of dynamic grids that are defined.

yes? SHOW GRID/DYNAMIC

Ref Sec33.8. SHOW LIST

Shows the current states of the LIST command.

yes? SHOW LIST

The qualifier /ALL may be used with this command but exists merely for
compatibility reasons and has no effect.

Ref Sec33.9. SHOW MEMORY

/ALL/FREE/PERMANENT/TEMPORARY

Shows the state of the memory cache.

yes? SHOW MEMORY

Shows the current size of the cache.

yes? SHOW MEMORY[/qualifiers]

Command qualifiers for SHOW MEMORY:

SHOW MEMORY/ALL
Shows all variables currently cached in memory—permanent and temporary.

SHOW MEMORY/FREE
Shows cache memory and memory table space that remains unused.

Cache memory is organized into "blocks." One block is the smallest unit that any
variable stored in memory may allocate. The total number of variables that may be
stored in memory cannot exceed the size of the memory table. The "largest free
region" gives an indication of memory fragmentation. A typical SHOW
MEMORY/FREE output looks as below:

total memory table slots: 150

total memory blocks: 500

memory block size:1600

number of free memory blocks: 439

largest free region: 439

number of free regions: 1

free memory table slots: 149

SHOW MEMORY/PERMANENT
Lists the variables cached in memory and cataloged as permanent. These variables
will not be deleted even when memory space is needed. They become cataloged in
memory as permanent when the LOAD/PERMANENT command is used.

SHOW MEMORY/TEMPORARY
Lists the variables cached in memory and cataloged as temporary (they may be
deleted when memory capacity is needed).

Ref Sec33.10. SHOW MODE

Shows the names, states and arguments of the Ferret SET MODE command.

SHOW MODE [partial_mode_name1,name2,...]

Example:

yes? SHOW MODE VERIFY,META

The qualifier /ALL may be used with this command but exists merely for
compatibility reasons and has no effect.

Ref Sec33.11. SHOW MOVIE

Shows the current state of SET MOVIE. This state affects FRAME and graphics
commands specified with the /FRAME qualifier.

yes? SHOW MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility
purposes only and has no effect.

Ref Sec33.12. SHOW QUERIES

Queries are a vehicle for communication between Ferret and a stand-alone interface
program. They are not supported for general use.

Ref Sec33.13. SHOW REGION

Shows the current default region or the named region.

yes? SHOW REGION[/ALL] [region_name]

The region displayed is formatted appropriately for the axes of the last data
accessed. For example, suppose the region along the Y axis was specified as
Y=5S:5N. Then if the Y axis of the last data accessed is in units of degrees-latitude
the Y location is shown as Y=5S:5N but if the Y axis of the last data accessed is
"ABSTRACT" then the Y location is shown as Y=-5:5.

Ref Sec33.14. SHOW SYMBOL

/ALL

Shows the value of one or more symbols (string variables).

yes? SHOW SYMBOL[/qualifier] [symbol_name]

If no qualifier or symbol name is given then all defined symbols are listed. SHOW
SYMBOL will accept partial names such as

yes? SHOW SYMBOL *lab*
 MY_X_LABEL = "Sample Number"
 LABEL_2 = "Station at 23N"

Parameters

The parameter may be the name of a symbol, with * replacing part of the string as
above.

Command qualifiers for SHOW SYMBOL:

SHOW SYMBOL/ALL

Lists all symbols that are defined.

Ref Sec33.15. SHOW TRANSFORM

Shows the available transformations, including regridding transformations.

yes? SHOW TRANSFORM

Note: This is the most reliable way to view transformations. The output of this
command will be current even when this manual is out of date.

The qualifier /ALL may be used with this command but exists merely for
compatibility reasons and has no effect.

Ref Sec33.16. SHOW VARIABLES

/ALL /DATASET /DIAGNOSTIC /USER

Lists diagnostic or user-defined variables.

SHOW VARIABLES[/qualifier] [partial_name]

Examples:

yes? SHOW VARIABLES !all user-defined variables

yes? SHOW VAR/DIAG Q !all diagnostic vars beginning with Q

Command qualifiers for SHOW VARIABLES:

SHOW VARIABLES/ALL
Lists both diagnostic variables (available for the COX/PHILANDER model) and
user-defined variables.

SHOW VARIABLES/DATA_SET
Lists variables associated with the named dataset by DEFINE
VARIABLE/DATA_SET=

SHOW VARIABLES/DIAGNOSTIC
This is an unsupported (obsolete) qualifier. It lists "diagnostic" variables available
for the COX/PHILANDER model.

SHOW VARIABLES/USER
Lists expressions that have been defined by the user as new variables. This is the
default behavior of SHOW VARIABLES with no qualifier.

Ref Sec33.17. SHOW VIEWPORT

Shows one or more of the currently defined viewports. Omitting an argument gives
information on all viewports.

yes? SHOW VIEWPORT [view_name1,view_name2,...]

The qualifier /ALL may be used with this command but exists merely for
compatibility reasons and has no effect.

Ref Sec33.18. SHOW WINDOWS

Lists open window numbers and indicates which is the active one.

yes? SHOW WINDOWS

The qualifier /ALL may be used with this command but exists merely for
compatibility reasons and has no effect.

Ref Sec34. SPAWN

Executes a command line (Unix shell) command from within Ferret.

yes? SPAWN unix_shell_command

Example:

yes? SPAWN rm -f file.dat

Also, "SPAWN shell_name" allows the user to fork into an interactive shell. For
example:

yes? SPAWN csh

enters the user into a c-shell. Use EXIT to return to Ferret.

Ref Sec35. STATISTICS

/I/J/K/L X/Y/Z/T /D /BRIEF

Computes summary statistics about the data specified.

yes? STATISTICS[/qualifiers] expression_1 , expression_2 , ...

The statistics include:

● the size and shape of the region
● total number of data values in the region specified
● number of data values flagged as bad data
● minimum value
● maximum value
● mean value (arithmetic mean—not weighted by grid spacing)
● standard deviation (also not weighted by grid spacing)

All values are reported to 5 significant digits.

STATISTICS interacts with the current context exactly as the commands
CONTOUR, PLOT and LIST do.

Parameters

Expressions may be anything described under Expressions. If multiple variables or
expressions are specified they are treated in sequence. The expression(s) are
inferred from the current context if omitted from the command line.

Command qualifiers for STATISTICS:

STATISTICS/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,
Z, or T) to be used when computing statistics about the expression(s).

STATISTICS/D=
Specifies the default data set to be used when computing statistics about the
expression(s).

STATISTICS/BRIEF
Produces a shorter listing involving less computation.

Ref Sec36. UNALIAS

Alias for CANCEL ALIAS (p. 281).

Ref Sec37. USE

The USE command is an alias for SET DATA/FORMAT=cdf. (p. 338)

All qualifiers and restrictions are identical to SET DATA/FORMAT=cdf. If no
filename extension is given, ".cdf" is assumed.

Example:

yes? USE test

 is equivalent to

yes? SET DATA/FORMAT=cdf test

Ref Sec38. USER

Executes a user-written extension to the Ferret program.

yes? USER[/COMMAND=] expression_1 , expression_2, ...

The USER command is a means of incorporating custom changes in Ferret. It is
currently supported only by special request to the Ferret developers. Two special
features are currently accessible through the USER command—objective analysis
and scattered sampling of grids. These commands are superceded with Version 5.0
by the functionality available through external functions.

We recommend the user access objective analysis via the script objective.jnl. The
scattered sampling feature is used in the polar plotting GO tools (try "GO
polar_demo" at the Ferret prompt).

Ref Sec38.1. Objective analysis

(Note: see the version 4.4 documentation for an older way of gridding (X,Y, value)
triples onto a grid)

To grid a set of (X, Y, value) triples onto a grid of specified resolution, sometimes
called Objective analysis, use one of the family of "scat2grid" external functions.
 See the description of these functions starting at p. 80.

yes? SHOW FUNCTION/EXTERNAL scat*

The X, Y, and F(X,Y) are lists of locations and a value associated with each
location. Define X and Y axes of the desired the grid and call the function to
interpolate these points to the grid. Say you have a set of latitudes, longitudes, and
samples of a quantity N03 at those points, and that these are in the variables my_lat,
my_lon, and n03.

yes? DEFINE AXIS/X=170W:120W:5 xax5
yes? DEFINE AXIS/Y=0:40N:5 yax5
yes? LET n03_reg = scat2gridgauss_xy(my_lat, my_lon, n03, xax5,
yax5, 2.,2.,2.,2.)
yes? SHADE n03_reg

See also the example in the demo script,

yes? go objective_analysis_demo

Ref Sec38.2. Scattered sampling

Note: there was an older way of doing scattered sampling; see section 33.2 in the
version 4.4 documentation)

Ferret functions are available for sampling a gridded data field. See

yes? SHOW FUNCTION sample*

SAMPLEI(DAT_TO_SAMPLE,I_INDICES)
SAMPLEJ(DAT_TO_SAMPLE,J_INDICES) ! These sample a gridded field,
returning
SAMPLEK(DAT_TO_SAMPLE,K_INDICES) ! data at a set of grid points
along an
SAMPLEL(DAT_TO_SAMPLE,L_INDICES) ! axis

SAMPLEIJ(DAT_TO_SAMPLE,XPTS,YPTS) ! Returns data sampled at a 2-
dimensional
 ! subset of its grid points

SAMPLET_DATE(DAT_TO_SAMPLE,YR,MO,DAY,HR,MIN,SEC) ! Returns data
sampled by
 ! interpolating to one or more
times

SAMPLEXY(DAT_TO_SAMPLE,XPTS,YPTS) ! Returns data sampled at a set
of (X,Y)
 ! points, i.e., a ship track or
some
 ! other path, using linear
interpolation

Examples of the use of these functions are in ef_sort_demo.jnl

Ref Sec39. VECTOR

/I/J/K/L /X/Y/Z/T /D /ASPECT /FRAME /LENGTH /NOAXIS /NOLABELS
/OVERLAY /PEN /SET_UP /TITLE /COLOR /TRANSPOSE /HLIMITS /XSKIP

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

/VLIMITS /YSKIP

Produces a vector arrow plot.

VECTOR[/qualifiers] x_expr,y_expr

In a curvilinear coordinate system (map projections)

VECTOR[/qualifiers] x_expr, y_expr, xcoords, ycoords (see p.
187)

Parameters

x_expr, y_expr
Algebraic expressions (or simple variables) specifying the x components and y
components of the vector arrows. The expression pair will be inferred from the
current context if omitted from the command line.

Command qualifiers for VECTOR:

VECTOR/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,
Z, or T) to be used when evaluating the expression being plotted.

VECTOR/D=
Specifies the default data set to be used when evaluating the expression pair being
plotted.

VECTOR/ASPECT
Adjusts the direction of the vectors to compensate for differing axis scaling.

yes? VECTOR/ASPECT[=aspect_ratio] x_expr, y_expr...

The size of vectors is unchanged—only the direction is modified. Under most
circumstances /ASPECT should be specified. The aspect ratio is (Y-scale/X-scale).

 If the plot lies in the latitude/longitude plane the aspect ratio correction will be
adjusted as a function of COS(LATITUDE) on the plot.

For example, in a typical oceanographic XZ plane plot the vertical (Z) axis is in
tens of meters while the horizontal (X) axis is in hundreds of kilometers. This
means the vertical scale is greatly magnified in comparison to the horizontal. The
/ASPECT qualifier correspondingly magnifies the vertical component of the vector
relative to the horizontal while preserving the length of the vector. The
magnification factor is documented on the plot.

If no aspect ratio is specified by the user (e.g. VECTOR/ASP with no value), then
Ferret will plot the vectors so that the two components' relative sizes shows their
ratio. (In an XZ plane, then, ocean velocity vectors will nearly always appear
horizontal) .

VECTOR/FLOWLINE[/DENSITY]

As of version 5.3, VECTOR/FLOWLINE (alias FLOWLINE) draws continuous
flowlines from the vector components U and V. The qualifier /DENSITY controls
the number of lines drawn. There is also a 4-argument form of this command for
drawing flowlines in curvilinear coordinates. Note that Ferret does not
compute a stream function, but draws a pathline integration of a 2-
dimensional instantaneous flow field. In a 3-dimensional flow field the plots
are only useful as a qualitative visualization tool.

The size of the arrows indicates the speed of the flow. Lines are drawn until they
intersect a border of the region or another line.

As with the standard VECTOR command, the /ASPECT qualifier adjusts the
direction of the vectors to compensate for differing axis scaling. Under most
circumstances /ASPECT should be specified.

The underlying algorithm is used with permission from the GrADS program. Our
thanks to COLA, the Center for Ocean-Land-Atmosphere Studies, for access to this
technique.

Example 1:

yes? USE coads_climatology

yes? SET REGION/x=150e:130w/y=40s:50n/l=6

yes? FLOW/ASPECT/DENSITY=4 uwnd,vwnd

Example 2:

yes? USE coads_climatology

yes? SET REGION/x=0:360/y=70s:70n/l=1

yes? go mp_lambert_cyl

yes? set grid uwnd

yes? go mp_aspect

yes? FLOW/ASPECT/NOAXIS/NOLAB uwnd, vwnd, x_page, y_page

yes? go mp_fland; go mp_graticule

VECTOR/FRAME
Causes the graphic image produced to be captured as an animation frame in the file
specified by SET MOVIE. In general the FRAME command (p. 310) is more
flexible and we recommend its use rather than this qualifier.

VECTOR/LENGTH=
Controls the size of vectors.

yes? VECTOR/LENGTH[=value_of_standard]

If the /LENGTH qualifier is omitted Ferret automatically selects reasonable vector
lengths. To reuse the vector length from the last VECTOR plot use
VECTOR/LENGTH.

To specify the vector lengths manually use the value_of_standard argument. This
associates the value "val" with the standard vector length, normally ½ inch. Note
that the PPLUS command VECSET can be used to modify the length of the
standard vector. This is also the length that is displayed in the vector key.

Example:

yes? VECTOR/LENGTH=100 U,V

Creates a vector arrow plot of velocities with ½ inch vectors for speeds of 100.

VECTOR/NOAXIS
Suppresses all axis lines, tics, and labeling so that no box appears surrounding the
contour plot. This is especially useful for map projection plots.

VECTOR/NOLABELS
Suppresses all plot labels.

VECTOR/NOKEY
Suppresses key at the bottom of the plot which shows the vector length. Use in
conjunction with /NOLABELS to remove the name of the variables on overlay
plots..

VECTOR/OVERLAY
Causes the indicated vector field to be overlaid on the existing plot.

VECTOR/COLOR=
Specifies the line color for the vectors. The available color names are Black, Red,
Green, Blue, LightBlue, Purple, and White (not case sensitive), corresponding to
the /PEN values 1-6, respectively. (/COLOR also accepts numerical values.). Note
that White is only available for the default THICKNESS=1.

yes? VECTOR/PEN=green x_expr, y_expr

VECTOR/PEN=
Specifies the line style for the vectors. /PEN= takes the same arguments as the
/LINE= qualifier for command PLOT. See command PLOT/LINE= (p. 326). "n"

ranges from 1 to 18.

yes? VECTOR/PEN=n x_expr, y_expr

VECTOR/SET_UP
Performs all the internal preparations required by program Ferret for vector plots
but does not actually render output. The command PPL can then be used to make
changes to the plot prior to producing output with the PPL VECTOR command.
This permits plot customizations that are not possible with Ferret command
qualifiers. See the chapter "Customizing Plots" (p. 155).

Note that when the /SETUP qualifier is used the /XSKIP and /YSKIP qualifiers are
ignored. In this case, use arguments to the PPL VECTOR command to achieve the
thinning.

PPL VECTOR/qualifiers,xskip,yskip

yes? PPL VECTOR/over/3,4 specifies XSKIP=3 and YSKIP=4

VECTOR/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this
qualifier Ferret selects a title based on information about x_expr and y_expr. To
include font change and color_thickness specifications (e.g., @TI@C002) in the
title string, it is necessary either to CANCEL MODE ASCII or to include a leading
ESC (escape) character. See the chapter "Customizing Plots", section "Fonts" (p.
175).

yes? VECTOR/TITLE="title_string" x_expr, y_expr

VECTOR/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is
always drawn horizontal and the Y and Z axes are drawn vertical. For Y-Z plots the
Z data axis is vertical.

VECTOR/HLIMITS=
Specifies horizontal axis limits and tic interval. Without this qualifier, Ferret selects

reasonable values.

yes? VECTOR/HLIMITS=lo:hi:increment x_expr, y_expr

The optional "increment" parameter determines tic mark spacing on the axis. If the
increment is negative, the axis will be reversed.

The /HLIMITS and /VLIMITS qualifiers will retain their "horizontal" and
"vertical" interpretations in the presence of the /TRANSPOSE qualifier. Thus, the
addition of /TRANSPOSE to a plotting command mandates the interchange of "H"
and "V" on the limits qualifiers

VECTOR/VLIMITS=

Specifies the axis range and tic interval for the vertical axis. See /HLIMITS
(above)

VECTOR/XLIMITS=/YLIMITS=
Note: XLIMITS and YLIMITS have been denigrated. Please use HLIMITS and
VLIMITS instead.

VECTOR/XSKIP=/YSKIP=
Draws every nth vector along the requested axis beginning with the first vector
requested.

yes? VECTOR/XSKIP=nx/YSKIP=ny u,v

By default, Ferret "thins" vectors to achieve a clear plot. These qualifiers allow
control over thinning.

Note that when the /SETUP qualifier is used the /XSKIP and /YSKIP qualifiers are
ignored. In this case, use arguments to the PPL VECTOR command to achieve the
thinning.

PPL VECTOR/qualifiers,xskip,yskip

yes? PPL VECTOR/over/3,4 specifies XSKIP=3 and YSKIP=4

Ref Sec40. WHERE

The command (alias) WHERE requests mouse input from the user, using the
indicated click position to define the symbols XMOUSE and YMOUSE in units of
the plotted data. Comments that include the digitized position are also written to the
current journal file (if open). The WHERE command can be embedded into scripts
to allow interactive positioning of color keys, boxes, lines, and other annotations.

Ref Sec41. WIRE

/I/J/K/L /X/Y/Z/T /D /FRAME /NOLABEL /OVERLAY/SET_UP /TITLE
/TRANSPOSE /VIEWPOINT /ZLIMITS /ZSCALE

Produces a wire frame representation of a two-dimensional field.

yes? WIRE[/qualifiers] expression

Parameters

The expression may be anything described in the chapter "Variables and
Expressions", section "Expressions" (p. 61). The expression will be inferred from
the current context if omitted from the command line. Multiple expressions are not
permitted in a single WIRE command. The indicated region should denote a plane
(2D) of data.

Command qualifiers for WIRE:

WIRE/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y,
Z, or T) to be used when evaluating the expression being plotted.

Example:

The following commands will create a wire frame representation of a simple
mathematical function in two dimensions.

yes? SET REGION/I=1:80/J=1:80

yes? WIRE/VIEWPOINT=-4,-10,2 exp(-1*(((I-40)/20)^2 + ((J-
40)/20)^2))

WIRE/D=
Specifies the default data set to be used when evaluating the expression being
plotted.

WIRE/FRAME
Causes the graphic image produced to be captured as an animation frame in the file
specified by SET MOVIE. In general the FRAME command (p. 310) is more
flexible and we recommend its use rather than this qualifier.

WIRE/NOLABEL
Suppresses all plot labels.

WIRE/OVERLAY
Causes the indicated wire frame plot to be overlaid on the existing plot.

WIRE/SET_UP
Performs all the internal preparations required by program Ferret for wire frame
graphics but does not actually render output. The command PPL can then be used
to make changes to the plot prior to producing output with the PPL WIRE
command. This permits plot customizations that are not possible with Ferret
command qualifiers. See the chapter "Customizing Plots" (p. 155).

WIRE/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this
qualifier Ferret selects a title based on information about the expression. To include
font change and color_thickness specifications (e.g., @TI@C002) in the title string,
it is necessary either to CANCEL MODE ASCII or to include a leading ESC
(escape) character. See the chapter "Customizing Plots", section "Fonts" (p. 175).

WIRE/TRANSPOSE
Causes the X and Y axes to be interchanged.

WIRE/VIEWPOINT=
Specifies a viewpoint for viewing the wire frame.

yes? WIRE/VIEWPOINT=x,y,z expression

The x,y values are specified as coordinates on the X and Y axes (though they may
exceed the axis limits). The z value is in units of the requested variable.

WIRE/ZLIMITS=
Specifies limits of Z axis for wire frame.

yes? WIRE/ZLIMITS=zmin,zmax,delta expression

The values given are in units of the requested variable. (The string given as an
argument to /ZLIMITS= is passed unmodified to the PPLUS command WIRE as
the zmin and zmax parameters.)

WIRE/ZSCALE=
Controls Z axis scaling of the 3-D plot.

yes? WIRE/ZSCALE=s expression

The default value is equivalent to (ymax-ymin)/(zmax-zmin) (i.e., the aspect ratio
of the Z axis to the Y axis). This qualifier is identical to the PPLUS VIEW
command parameter of the same name.

GLOSSARY

ABSTRACT EXPRESSION (or VARIABLE)

An expression which contains no dependencies on any disk-resident data is
referred to as "abstract". For example, SIN(x), where x is a pseudo-variable.

AXIS

A line along one of the dimensions of a grid. The line is divided into n points, or
more precisely, n grid boxes where each grid box is a length along the axis.
Adjacent grid boxes must touch (no gaps along the axis) but need not be uniform in
size (points may be unequally spaced). Axes may be oriented (e.g. latitude, depth,
...) or simply abstract values.

COARDS

A profile for the standardization of NetCDF files.

CONTEXT

The information needed to obtain values for a variable: the location in space and
time (points or ranges), the name of the data set (if a file variable) and an optional
grid.

DATA SET

A collection of variables in one or more disk files that may be specified with a
single SET DATA command.

DESCRIPTOR

A file containing background data about a GT or TS-formatted data set: variable
names, coordinates, units and pointers to the data files. Descriptor file names
normally end with ".DES".

DYNAMIC AXIS

An axis that is inferred through the use of lo:hi:delta notation. It is created and
destroyed dynamically by Ferret.

DYNAMIC GRID

A grid whose axes are inferred from a regridding operation that does not explicitly
specify all of the destination axes or specifies a destination grid that can be
rendered conformable with the originating grid only if some axes are removed or
substituted.

EXPRESSION

Any valid combination of operators, functions, transformations, variables and
pseudo-variables is an expression. For example, "ABS(U)", "TEMP/(-0.03^Z)" or
"COS(TEMP[Y=0:40N@LOC:15])".

EZ DATA SET

Any disk data file that is readable by Ferret but is not in GT, TS, or NetCDF
format.

FILE VARIABLE

A variable made available with the SET DATA command. File variables are data
in disk files suitable for plotting, listing, using in user-variable definitions, etc.

GKS

The "Graphical Kernel System" — a graphics programming interface that
facilitates the development of device-independent graphics code.

GO FILE or GO SCRIPT

A file of Ferret commands intended to be executed as a single command with the
GO command.

GRID

A group of 1 to 4 axes defining a coordinate space. A grid can associate the axes as
"outer products" creating a rectangular array of points. Grids may be defined with
the DEFINE GRID command or from inside data sets.

GRID BOX

A length along an axis assumed to belong to a single grid point. It is represented by
a box "middle", a box upper and a box lower limit. The "middle" need not actually
be at the center of the box but the upper limit of box m must always be the lower
limit of box m+1. (This concept is needed for integration of variables along an
axis.)

GRID FILE

A file containing the definition of grids and axes — part of the GT and TS formats.

GT FORMAT

"grids at time steps" format. A direct access format using a separate descriptor file
for descriptive metadata.

METAFILE

A representation of graphics stored in a computer file. Such a file can be processed
by an interpreter program (such as Fprint) and sent to a graphics output device.

MODULO AXIS

An axis where the first point of the axis logically follows the last. Examples of this
are degrees of longitude or dates in a climatological year.

MODULO REGRIDDING

A regridding operation where the destination axis is modulo and the regridding
transform is a modulo operation. Typical usage would be to create a 12-month
climatology from a multi-year time series.

NETCDF

Network Common Data Format is an interface to a library of data access routines
for storing and retrieving scientific data. NetCDF allows the creation of data sets
which are self-describing and network transparent. As of Ferret version 2.30,
NetCDF is the suggested method of data storage.

OPERATOR

A function that is syntactically expressed in-line instead of as a name followed by
arguments. The Ferret operators are +, -, *, /, ^, AND, OR, EQ, NE, LT, LE, GT
and GE.

PSEUDO-VARIABLE

A special variable whose values are coordinates or coordinate information about a
grid. X, I, and XBOX are the pseudo-variables for the X axis — similarly for the
other axes.

QUALIFIER

Commands and variable names may require auxiliary information supplied by
qualifiers. In the command "SHOW DATA/FULL," "/FULL" is a qualifier. In the
variable "SST[Y=20N]," "Y=20N" is a qualifier.

REGION

The location in space and time (or other axis units) at which a variable is to be
evaluated. The locations may be points or ranges. For example, T="1-JAN-
1982",Y=12S:12N describes a region in latitude and time.

REGRID

The process of converting the values of a variable from one grid to another. By
default this is done through multi-linear interpolation along all axes from the old
grid to the new. Other methods are also supported.

SUBSCRIPT

A coordinate system for referring to grid locations in which the points along an
axis are regarded as integers from 1 to the number of points on the axis. The
qualifiers I, J, K, and L are provided to specify locations by subscript.

TRANSFORMATION

An operation performed on a variable along a particular axis and specified via the
syntax "@trn". Some transformations, such as averaging (e.g. U[Z=@AVE]),
reduce the range of the variable along the axis to a single point. Others, such as
taking a derivative (e.g., V[T=@DDC]) do not.

TMAP-FORMAT

Special formats created by the Thermal Modeling and Analysis Project (TMAP).
These formats use descriptor files to store information about the variables, units,
titles, and grids for the data. Separate formats allow optimized access as time series
(TS format) or as geographical regions (GT format). As of Ferret version 2.30,
NetCDF is the suggested method of data storage.

TS FORMAT

"time step" format. A direct access format using a separate descriptor file for
descriptive metadata.

USER-DEFINED VARIABLE

A variable created with DEFINE VARIABLE (alias LET).

VARIABLE

Value defined on a grid.

VARIABLE NAME

The name by which a variable will be indicated in commands and expressions.
Names begin with letters and may include letters, digits, dollar signs, and
underscores.

VARIABLE TITLE

A title string used to label plots and listed outputs of a variable.

VIEWPORT

A graphical display region which may be any subrectangle of a window. Graphical
commands (PLOT, CONTOUR, etc.) take complete control of a viewport, clearing
it as needed. A window may contain several viewports — possibly overlapping.
Viewports are defined with DEFINE VIEWPORT and controlled with SET and
CANCEL VIEWPORT.

WINDOW

A rectangular graphical display region. On a graphics terminal the terminal screen
is the one and only window available. On a graphics workstation there may be
many output windows.

WORLD COORDINATE

A coordinate system for referring to grid locations in which the points along an
axis are regarded as continuous values in some particular units (e.g., meters of
depth, degrees of latitude). The qualifiers X, Y, Z, and T are provided to specify
locations by world coordinate.

Appendix A: EXTERNAL FUNCTIONS

A number of external functions are included with the Ferret distribution. This
number is expected to grow as Ferret developers and users contribute more
functions. See the chapter "Writing External Functions" (p. 253) for how to adapt
your Fortran code to a Ferret external function. Send your contributions to the
Users Guide editor at ferret_ug@pmel.noaa.gov.

The functions are listed in the following sections. To see what functions are
available to you, type

yes? SHOW FUNCTION/EXTERNAL

or

yes? SHOW FUNCTIONS/DETAILS/EXTERNAL function_name

gives further details on how the arguments influence the grid for the function's
result.

Appendix A Sec1. COMPRESSI

COMPRESSI(DAT) Returns data, compressed along the I axis: Missing
points moved to the end

Arguments: DAT DAT: variable to compress in I

Result Axes: X ABSTRACT, same length as DAT x-axis

 Y Inherited from DAT

mailto:ferret_ug@pmel.noaa.gov,

 Z Inherited from DAT

 T Inherited from DAT

Note:
It is generally advisable to include explicit limits when working with functions that
replace axes. for example, consider the function compressi(v). The expression

list/i=6:10 compressi(v)

is not equivalent to

list compressi(v[i=6:10])

The former will list the 6th through 10th compressed indices from the entire i
range of variable v. the latter will list all of the indices that result from
compressing v[i=6:10].

Appendix A Sec2. COMPRESSJ

COMPRESSJ(DAT) Returns data, compressed along the J axis: Missing points
moved to the end

Arguments: DAT DAT: variable to compress in J

Result Axes: X Inherited from DAT

 Y ABSTRACT, same length as DAT y-axis

 Z Inherited from DAT

 T Inherited from DAT

Note: see the note under COMPRESSI on specifying axis limits (p. 71)

Appendix A Sec3. COMPRESSK

COMPRESSK(DAT) Returns data, compressed along the I axis: Missing points
moved to the end

Arguments: DAT DAT: variable to compress in K

Result Axes: X Inherited from DAT

 Y Inherited from DAT

 Z ABSTRACT, same length as DAT z-axis

 T Inherited from DAT

Note: see the note under COMPRESSI on specifying axis limits (p. 71)

Appendix A Sec4. COMPRESSL

COMPRESSL(DAT) Returns data, compressed along the L axis: Missing points
moved to the end

Arguments: DAT DAT: variable to compress in L

Result Axes: X Inherited from DAT

 Y Inherited from DAT

 Z Inherited from DAT

 T ABSTRACT, same length as DAT t-axis

Note: see the note under COMPRESSI on specifying axis limits (p. 71)

Appendix A Sec5. COMPRESSI_BY

COMPRESSI_BY (var, mask), Compress data according to a mask

Arguments: VAR Variable to compress according to MASK

 MASK mask to use in compressing the data

Result Axes: X Abstract

 Y Inherited from VAR and MASK

 Z Inherited from VAR and MASK

 T Inherited from VAR and MASK

Compress variable "dat" along its I axis using the (multi-dimensional) mask

supplied in the second argument.

For example:

yes? LET mask = {1,,1,,1} + 0*L[l=101:102] + 0*K[k=10:11]
yes? LIST mask
 {1,,1,,1} + 0*L[L=101:102] + 0*K[K=10:11]
 1 2 3 4 5
 1 2 3 4 5
 ---- L:101 T: 101
 10 / 10: 1.000 1.000 1.000
 11 / 11: 1.000 1.000 1.000
 ---- L:102 T: 102
 10 / 10: 1.000 1.000 1.000
 11 / 11: 1.000 1.000 1.000

yes? LIST compressi_by({11,22,33,44,55},mask)
 COMPRESSI_BY({11,22,33,44,55},MASK)
 1 2 3 4 5
 1 2 3 4 5
 ---- L:101 T: 101
 10 / 10: 11.00 33.00 55.00
 11 / 11: 11.00 33.00 55.00
 ---- L:102 T: 102
 10 / 10: 11.00 33.00 55.00
 11 / 11: 11.00 33.00 55.00

Appendix A Sec6. COMPRESSJ_BY

COMPRESSJ_BY (var, mask), Compress data according to a mask

Arguments: VAR Variable to compress according to MASK

 MASK mask to use in compressing the data

Result Axes: X Inherited from VAR and MASK

 Y Abstract

 Z Inherited from VAR and MASK

 T Inherited from VAR and MASK

Compress variable "dat" along its J axis using the (multi-dimensional) mask
supplied in the second argument. See the example under COMPRESSI_by.

Appendix A Sec7. COMPRESSK_BY

COMPRESSK_BY (var, mask), Compress data according to a mask

Arguments: VAR Variable to compress according to MASK

 MASK mask to use in compressing the data

Result Axes: X Inherited from VAR and MASK

 Y Inherited from VAR and MASK

 Z Abstract

 T Inherited from VAR and MASK

Compress variable "dat" along its K axis using the (multi-dimensional) mask
supplied in the second argument. See the example under COMPRESSI_by.

Appendix A Sec8. COMPRESSL_BY

COMPRESSL_BY (var, mask), Compress data according to a mask

Arguments: VAR Variable to compress according to MASK

 MASK mask to use in compressing the data

Result Axes: X Inherited from VAR and MASK

 Y Inherited from VAR and MASK

 Z Inherited from VAR and MASK

 T Abstract

 Compress variable "dat" along its L axis using the (multi-dimensional) mask
supplied in the second argument. See the example under COMPRESSI_by.

Appendix A Sec9. CONVOLVEI

CONVOLVEI (VAR, WEIGHT), CONVOLVEJ (VAR, WEIGHT) ,
CONVOLVEK (VAR, WEIGHT), CONVOLVE L (VAR, WEIGHT)
Convolve I (J,K,or L)component of variable with weight function

Arguments: VAR COM: variable to convolve

 WEIGHT Weight function

Result Axes: X Inherited from VAR

 Y Inherited from VAR

 Z Inherited from VAR

 T Inherited from VAR

This function (and likewise CONVOLVEJ, CONVOLVEK, and CONVOLVEL)
convolves the variable VAR, with the weight function, wt along the X axis. Note
that the variable's context may not be of adequate size for the full calculation.
 Missing data flags will be inserted where computation is impossible.

When bad data points are encountered in the component data all result data
depending on it are flagged as bad, too.

The weight function is applied at each point from i-hlen to i+hlen, where hlen is
half the length of the weight function. If the function is of even length, a zero
weight is used at the upper end. Thus if the weights were {0.1, 0.4, 0.4, 0.1} the
result at point I would be computed as the sum 0.1* COM(i-2) + 0.4* com(i-1) +
0.4* COM(i) + 0.1* COM(i+1) + 0.* COM(i+2)

Example:

Use the function to smooth a function. ()

yes? LET weight = {0.25, 0.5, 0.25}
yes? LET c = SIN(x[x=0:10:.1]) + RANDU(X[X=0:10:.1])/5
yes? PLOT c
yes? PLOT/OVER/TITLE="convolvei" CONVOLVEI(c,weight)

Appendix A Sec10. EOF_SPACE

EOF_SPACE(A, FRAC_TIMESER) Returns EOF (Empirical Orthogonal
Function) spacial fields(eigenfunctions) from x-y-time field

Arguments: A Variable in x, y, t; may be a function of z

 FRAC_

TIMESER

Use only those time series with this fraction valid
data, e.g. 0.8 to require that 80% of the data be
present to use the data at a location.

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T ABSTRACT 1 to NEOF

The EOF functions all make the same computations, returning different portions of
the results. EOF_SPACE returns the eigenfunctions, normalized so that they have
the units of data, while time amplitude functions (TAF's) are dimensionless. Thus
the sum of the values of a given EOF = sqrt(eigenvalue), and the mean of a given
TAF = 1. EOF_STAT returns some useful statistics: the number of EOF's which
were computed and normalized for the parameters given; the %variation explained
for each eigenfunction, and the eigenvalues.

Specifying the context of the input variable explicitly e.g.

 EOF_SPACE(A[x=20:40,y=2s:40n,l=1:58],FRAC_TIMESER)

 will prevent any confusion about the region. See the note in chapter 3 (p.65)on
the context of variables passed to functions.

The method is an implementation of Chelton's '82 method for finding EOFs of
gappy time series. If there are no gaps, it reduces to ordinary EOFs.

The EOF analysis solves a matrix problem where the matrix is dimensioned
(NX*NY) by NT, which can quickly become quite large. The EOF functions use
other workspace as well which demands even more memory, and often memory
must be increased with the SET MEMORY command. Regridding to a coarser
grid or restricting the region may be necessary.

See the example under EOF_STAT for more on the input parameters, and see the
demonstration ef_eof_demo.jnl for examples of this function.

Note: Earlier versions of the EOF functions had one more parameter. Check the
version you have by saying

yes? SHOW FUNCTION eof*

The PCT_CUTOFF argument let you specify a minimum percent variance
explained, and only scaled and returned N EOF's, up to the point where the EOF
explained at least that variance. The current version is equivalent to setting
PCT_CUTOFF = 0; e.g. all EOF's are scaled and returned in the result.

Appendix A Sec11. EOF_STAT

EOF_STAT(A,FRAC_TIMESER) Used with EOF_SPACE and/or
EOF_TFUNC. Return statistics related to an EOF solution for a given set of
parameters. Results are on the x-axis j = 1: # EOFscomputed and scaled, j = 2: %
percentage of total variance accounted for by each eigenvector, j = 3: the
eigenvalues.

Arguments: A Variable in x, y, t; may be a function of z

http://www.ferret.noaa.gov/Ferret/Demos/ef_eof_demo/ef_eof_demo.html

 FRAC_

TIMESER

Use only those time series with this fraction valid
data, e.g. 0.8 to require that 80% of the data be
present to use the data at a location.

Result Axes: X ABSTRACT: 1 to NEOF

 Y ABSTRACT: 1 through 3 as outlined in the
description.

 Z NORMAL (no axis)

 T NORMAL (no axis)

Please see the discussion under EOF_SPACE, and see the demonstration
ef_eof_demo.jnl for examples of this function.

Example results:

For a simple sample function, eof_stat called to decompose it into eigenfunctions.
 We allow data to be used if the time series at the point has at least 80% valid data.

Request the number of eigenvalues computed for this choice of parameters.

yes? list/i=1/j=1 eofstat
 VARIABLE : EOF_STAT(SST[X=67W:1W,Y=11S:11N], 0.8)0
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 X : 1
 Y : 1
 284.0

Now get the percent variance explained by the eigenfunctions which were
computed.

http://www.ferret.noaa.gov/Ferret/Demos/ef_eof_demo/ef_eof_demo.html

yes? list/i=1:10/j=2 eofstat
 VARIABLE : EOF_STAT(SST[X=67W:1W,Y=11S:11N], 0.8)
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 SUBSET : 10 points (X)
 Y : 2
 2
 2
1 / 1: 86.95
2 / 2: 5.82
3 / 3: 3.87
4 / 4: 1.51
5 / 5: 0.56
6 / 6: 0.38
7 / 7: 0.31
8 / 8: 0.23
9 / 9: 0.15
10 / 10: 0.11

And finally the eigenvalues associated with these eigenfunctions.

yes? list/i=1:10/j=3 eofstat
 VARIABLE : EOF_STAT(SST[X=67W:1W,Y=11S:11N], 0.8)
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 SUBSET : 10 points (X)
 Y : 3
 3
 3
1 / 1: 249.4
2 / 2: 16.7
3 / 3: 11.1
4 / 4: 4.3
5 / 5: 1.6
6 / 6: 1.1
7 / 7: 0.9
8 / 8: 0.7
9 / 9: 0.4
10 / 10: 0.3

Appendix A Sec12. EOF_TFUNC

EOF_TFUNC(A, FRAC_TIMESER) Compute EOF time amplitude functions
from x-y-time field w/gaps.

Arguments: A Variable in x, y, t; may be a function of z

 FRAC_

TIMESER

Use only those time series with this fraction valid
data, e.g. 0.8 to require that 80% of the data be
present to use the data at a location.

Result Axes: X ABSTRACT: 1 to NEOF

 Y NORMAL (no axis)

 Z Inherited from A

 T Inherited from A

Please see the discussion under EOF_SPACE, and see the demonstration
ef_eof_demo.jnl for examples of this function.

The time amplitude functions (TAF's) are dimension less; and the mean of a given
TAF = 1. They are returned as follows: For x=1, time amplitude function
corresponding to the first eigenfunction is the time series with t=1:NT.

Appendix A Sec13. FINDHI

FINDHI(A,XRANGE,YRANGE) Find local maxima of a variable.

http://www.ferret.noaa.gov/Ferret/Demos/ef_eof_demo/ef_eof_demo.html

Arguments: A Variable in x and y, may be a function of z
and/or t

 XRANGE Range in data units of the X radius in which the
function looks for maxima

 YRANGE Range in data units of the Y radius in which the
function looks for maxima

Result Axes: X ABSTRACT

 Y ABSTRACT: j=1:3

 Z Inherited from A

 T Inherited from A

The maxima are listed along the X axis: j=1 contains the X locations of the points,
j=2 contains the Y coordinates of the points, and j=3 contains the function values
at the maxima.

This function looks for the maximumm gridded value in the neighborhood x+/-
XRANGE, Y+/- YRANGE. It returns only values in the interior of the region, not
on boundaries. It is an implementaion of the NCAR graphics routine "minmax"

The GO script label_lo_hi.jnl makes it easy to call this function and label and label
low's and high's with either their numerical value or the letters L and H. See the
demonstration script minmax_label_demo.jnl

Appendix A Sec14. FINDLO

FINDLO(A,XRANGE,YRANGE) Find local minima of a variable.

Arguments: A Variable in x and y, may be a function of z
and/or t

 XRANGE Range in data units of the X radius in which the
function looks for minima

 YRANGE Range in data units of the Y radius in which the
function looks for minima

Result Axes: X ABSTRACT

 Y ABSTRACT: j=1:3

 Z Inherited from A

 T Inherited from A

The minima are listed along the X axis: j=1 contains the X locations of the points,
j=2 contains the Y coordinates of the points, and j=3 contains the function values
at the minima.

This function looks for the minimumm gridded value in the neighborhood x+/-
XRANGE, Y+/- YRANGE. It returns only values in the interior of the region, not
on boundaries. It is an implementaion of the NCAR graphics routine "minmax".

The GO script label_lo_hi.jnl makes it easy to call this function and label and label
low's and high's with either their numerical value or the letters L and H. See the
demonstration script minmax_label_demo.jnl

Appendix A Sec15. FFT_IM

FFT_RE(A) computes the imaginary part of Fast Fourier Transform of time series
in variable A

Arguments: A Variable with a regular time axis; may be a
function of x, y, and/or z

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Generated by the function: frequency in
cyc/(time units from A)

The units of the returned time axis are "cycles/∆t" where ∆t is the time increment.

Even and odd N's are allowed. N need not be a power of 2. FFT_RE and
FFTP_IM assume f(1)=f(N+1), and the user gives the routines the first N pts.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at
www.netlib.org.

Specifying the context of the input variable explicitly e.g.

LIST FFT_RE(A[l=1:58])

 will prevent any confusion about the region. See the note in chapter 3 (p. 65)on
the context of variables passed to functions.

Appendix A Sec16. FFT_RE

http://www.netlib.org/

FFT_RE(A) computes the real part of Fast Fourier Transform of time series in
variable A

Arguments: A Variable with a regular time axis; may be a
function of x, y, and/or z

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Generated by the function: frequency in
cyc/(time units from A)

The units of the returned time axis are "cycles/∆t" where ∆t is the time increment.

Even and odd N's are allowed. N need not be a power of 2. FFT_RE and FFT_IM
assume f(1)=f(N+1), and the user gives the routines the first N pts.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at
www.netlib.org.

Specifying the context of the input variable explicitly e.g.

LIST FFT_RE(A[l=1:58])

 will prevent any confusion about the region. See the note in chapter 3 (p. 65)on
the context of variables passed to functions.

http://www.netlib.org/

Appendix A Sec17. FFT_INVERSE

FFT_INVERSE(AR, AI) computes inverse Fast Fourier Transform of the two
frequency series in AR and AI

Arguments: AR Real part of an FFT transform. Variable with
a frequency axis; may be a function of x, y,
and/or z

 AI Imaginary part of an FFT transform. Variable
with a frequency axis; may be a function of x,
y, and/or z

Result Axes: X Inherited from AR, AI

 Y Inherited from AR, AI

 Z Inherited from AR, AI

 T Abstract axis: 2*length of input frequency
axes of AR and AI

The returned time axis is abstract; the user will need to regrid it to the appropriate
time axis.

See also the functions FFTA and FFTP for the amplitude and phase of the
transforms.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at

www.netlib.org.

http://www.netlib.org/

Appendix A Sec18. WRITEV5D

WRITEV5D(V1,V2,V3,V4,V5,V6,V7,V8,FILENAME) Write up to 8 variables
to a Vis5D-formatted file V5.1

Arguments: V1

 V2

 V3 Up to 8 variables to write to the file

 V4

 V5

 V6

 V7

 V8

 FILENAME Name of the file to write: file type for Vis5d files
is .v5d

Result Axes: X Inherited from variables: all variables must have
the same x and y axes

 Y Inherited from variables: all variables must have
the same x and y axes

 Z Inherited from variables; the result grid will
contain the union of all the levels that are present
in the variables.

 T Inherited from variables: all variables must have
the same time axis

This function calls utility functions from the Vis5D distribution to write a Vis5D-
formatted file containing Ferret variables. TheVis5D tool is a system for
interactive visualization of large 5-D gridded data sets. It was developed by Bill
Hibbard and others at the University of Wisconsin, and can be found at

 http://www.ssec.wisc.edu/~billh/vis5d.html

There are limits in Vis5D on the size of the grid and the number of timesteps. The
function will issue an error if these limits are exceeded.

To make it more convenient to call the writev5d function, to open Vis5D from
Ferret, and to append to a Vis5D file, GO tools are available: vis5d_write.jnl,
vis5d_start.jnl, and vis5d_append.jnl. These have the filename first in their
argument lists, and do not require the user to specify all 8 arguments to the
function.

Write 3 variables to a file, then append to some of the variables. The times in this
example have a gap in them; this will show up in the Vis5d tool as a gap in time.
 Last, start Vis5d and open the file.

Yes? SET REGION/I=55:180/J=30:60
yes? GO vis5d_write tm_1.v5d sst[L=20:30], airt[L=20:30], fcn_1

yes? GO vis5d_append t_1.v5d sst[l=34,50], airt[l=34,50]
yes? GO vis5d_start temper_1.v5d

See the demonstration ef_wv5d_demo.jnl for examples of this function.

http://www.ssec.wisc.edu/~billh/vis5d.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_wv5d_demo/ef_wv5d_demo.html

Appendix A Sec19. ZAXREPLACE_AVG

ZAXREPLACE_AVG(V,ZVALS,ZAX)

 Use weighted averaging to convert between alternative monotonic Zaxes. The
weighting is done according to the portion of the source box that lies within the
destination grid cell.

The mapping between the source and destination Z axes is a function of X,Y, and
or T. Typical applications in the field of oceanography include converting from a Z
axis of layer number to a Z axis in units of depth (e.g., for sigma coordinate fields)
and converting from a Z axes of depth to one of density (for a stably stratified
fluid).

Argument 1, V, is the field of data values, say temperature on the "source" Z-axis,
say, layer number. The second argument, ZVALS, contains values in units of the
desired destination Z axis (ZAX) on the Z axis as V — for example, depth values
associated with each vertical layer. The third argument, ZAX, is any variable
defined on the destination Z axis, often "Z[gz=zaxis_name]" is used. For an
example of the ZAXREPLACE family of functions see ZAXREPLACE (p. 72)

Arguments: V A function of depth and perhaps, x, y, and time.

 ZVALS Destination Z axis values as a fcn of source Z
axis

 ZAX Variable with desired z (depth) axis points

Result Axes: X Inherited from V

 Y Inherited from V

 Z Inherited from ZAX

 T Inherited from V

Appendix A Sec20. ZAXREPLACE_BIN

ZAXREPLACE_BIN(V,ZVALS,ZAX)

Use unweighted averaging to convert between alternative monotonic Zaxes. The
function finds the source points within each destination box and averages them.

The mapping between the source and destination Z axes is a function of X,Y, and
or T. Typical applications in the field of oceanography include converting from a Z
axis of layer number to a Z axis in units of depth (e.g., for sigma coordinate fields)
and converting from a Z axes of depth to one of density (for a stably stratified
fluid).

Argument 1, V, is the field of data values, say temperature on the "source" Z-axis,
say, layer number. The second argument, ZVALS, contains values in units of the
desired destination Z axis (ZAX) on the Z axis as V — for example, depth values
associated with each vertical layer. The third argument, ZAX, is any variable
defined on the destination Z axis, often "Z[gz=zaxis_name]" is used. For an
example of the ZAXREPLACE family of functions see ZAXREPLACE (p. 72)

Arguments: V A function of depth and perhaps, x, y, and time.

 ZVALS Destination Z axis values as a fcn of source Z
axis

 ZAX Variable with desired z (depth) axis points

Result Axes: X Inherited from V

 Y Inherited from V

 Z Inherited from ZAX

 T Inherited from V

Appendix B: PPLUS Users Guide

Note: This is the Users Guide for PPLUS, also called Plot Plus, a Scientific Graphics System written by
 Donald W. Denbo April 8, 1987. Its graphics calls are the basis for Ferret's graphics. In this appendix
the PPLUS Users Guide is included unchanged, except for formatting changes and without its table of
contents or index to avoid confusion. Note that some of the information is not relevant to the purpose of
making PPLUS calls from Ferret. If there are differences, adhere to the information in the main Ferret
Users Guide. See particularly the chapter "Customizing Plots" in the Ferret Users Guide (p. 155) for
discussion of how Ferret interacts with PPLUS

Appendix B Sec1 INTRODUCTION

 Plot Plus (PPLUS) is an interactive, command-driven general-purpose program for plotting user
supplied data. PPLUS recognizes data in standard Fortran formatted, unformatted and free format
 files as well as some specialized formats (see the section on Data Formats). Data can also be entered
 from the keyboard.

The major use of PPLUS is the plotting of contour data and X-Y pairs. A very small number of
commands are required to generate a plot, making use of the many defaults available. However, it
 is also possible to control almost every aspect of the plot and to generate a final product which looks as
though it were professionally drafted. Over thirty character sets are available, including special
 Greek and Math symbols. It is possible to make a composite of several plots of different kinds (or
the same kind) on a single page and to add text information anywhere on the plot.

 PPLUS commands can be entered interactively from the keyboard or from a command file much
like a VAX/VMS command file. PPLUS command files support parameter passing, symbol
 substitution, and logic structures such as WHILE loops and block IF statements. The PPLUS
command files are simple ASCII disk files which are easily edited with any VAX/VMS editor.

Interactive help is available with the VAX/VMS command HELP PPLUS. (First, PPLUS definitions
must have been established as indicated in the Getting Started chapter.)

Appendix B Sec2 GETTING STARTED

Appendix B Sec2.1 VAX/VMS

To get a copy of this manual, type the following lines on your terminal in response to the VAX/VMS
prompt:

 $ @DISK1:[OC.SYMBOLS]PLOT5
 $ PPLUS_MANUAL
 $ PPLUS_FONTS

 The manual will be printed on the laser printer, and the PPLUS character fonts will be plotted on the
Versatec plotter.

Appendix B Sec2.2 Required Definitions

PPLUS requires several assignments and definitions to execute under VMS. The following
 should be included in your LOGIN.COM file prior to running PPLUS:

 $ @DISK1:[OC.SYMBOLS]PLOT5.COM
 $ GRAPHTERM :== xxxx,

 where xxxx describes your graphics terminal and has the following allowed values:

 VT240
 GVT+
 ZENITH
 TEK4010
 MAC
 TEK41XX
 TEK4105
 TAB

 In order to provide automatic entry and exit into and out of graphics mode you should use the
GRAPHTERM that corresponds to your terminal. If your terminal is a TEK4010 or TEK4014
 compatible, but not one of the above, then place your terminal into graphics mode before plotting
and use GRAPHTERM :== TEK4010. The execution of PLOT5.COM will define any other symbols
needed by PPLUS.

PPLUS is entered interactively by typing PPLUS (or just PPL) in response to the VAX/VMS prompt.

 Interactive help is available by typing HELP PPLUS in response to the VAX/VMS prompt. If
you are in PPLUS, help is available by typing HLP.

Appendix B Sec2.2.1 Optional Definitions

 In addition to the above, the following VAX/VMS symbols and logicals may optionally be defined by
the user:

PPL$RESET The "SAVE" file to be used by the PPLUS RESET command (logical).
 Default is PPL$EXE:PPL$RESET.DAT

ECHO Defines the file to be used to echo PPLUS commands (logical). Default is
ECHO.DAT.

PPL$STARTUP Defines an initialization or startup command command file that will be
executed each time PPLUS is entered (symbol). Default is no startup
command file.

Example definitions:

DEFINE PPL$RESET DISK1:[your-directory]your-reset.file
DEFINE ECHO your-echo.file
PPL$STARTUP :== DISK1:[your-directory]your-startup.file

Appendix B Sec3 COMMAND FORMAT

Appendix B Sec3.1 THE COMMANDS

The basic format for PPLUS commands is:

COMM[/Q1/Q2 ...][,arg1,arg2,arg3...][,sarg1,sarg2...]

where COMM is the PPL command. The numeric arguments arg1,arg2,... may be numbers in any
fortran format (e.g. 1.E-5, -6, 10.23) or blank. The character string arguments
 sarg1,sarg2,... must begin with a non-numeric character string or be enclosed in quotes ("), i.e.,
"100". If the numeric or character string arguments are blank, the input is considered null and the
default is used. Where all numeric arguments are to be defaulted, they may be omitted entirely (i.e.,
blank entries need not be made).

 PPLUS commands may have optional qualifiers (Q1, Q2 etc...). The format for qualifiers is "/value" or
"/novalue" for true or false, respectively.

All parameters must be separated by commas or blanks, except null entries which must have separating
commas. Null entries are allowed except where noted in the specific command description.

Note that if you use commas, a blank followed by a comma will be interpreted as a null entry. e.g.

PPL AXLEN 2 , 1 ! Is interpreted as PPL AXLEN 2(, null)
PPL AXLEN 2, 1 ! Is interpreted as PPL AXLEN 2,1
PPL AXLEN 2 1 ! Is interpreted as PPL AXLEN 2,1

Commands can be continued on sequential lines by inserting a "-" (minus sign) at the end of the line to
be continued.

 All commands/parameters may be entered upper or lower case. Conversion to upper case is
 performed automatically when required.

Appendix B Sec4 COMMAND SYNOPSIS

This is intended as a brief overview of the PPLUS commands. Commands are fully described in the
Command Description chapter. Examples illustrating their use are in the Beginners Guide section.

Appendix B Sec4.1 FILES

Appendix B Sec4.1.1 Data Files

These commands are used to extract the information from a file containing the data to be plotted.

RD Reads/identifies file containing data to be plotted.

SKP Skips/identifies records on the data file being read.

RWD Rewinds/identifies the data file.

FORMAT Describes the format of the data file.

VARS Locates the data to be plotted in the records of the data file.

EVAR Locates the data to be plotted in the records of the EPIC data file.

AUTOLAB Controls automatic labeling of EPIC and BIBO data plots.

Appendix B Sec4.1.2 Other Data Entry

The following commands allow data entry from a souce other than a file.

ENTER Allows data entry from the keyboard.

LINFIT Does a linear least squares fit on data already in a line and inserts the least squares line into the
next available line.

Appendix B Sec4.1.3 PPLUS Output Files

ECHO Controls echoing of PPLUS commands to a PPLUS echo file.

DEBUG Controls PPLUS debug mode (echos after symbol substitution)

PLTNME Names the output plot file.

PLTYPE Controls the format of the output plot file

Appendix B Sec4.1.4 PPLUS Command Files

@ Initiates reading of commands from a PPLUS command file.

ECHO Controls echoing of PPLUS commands to a PPLUS echo file.

DEBUG Controls PPLUS debug mode (echos after symbol substitution)

Appendix B Sec4.2 AXIS

 The following commands control axis labelling and appearance.

Appendix B Sec4.2.1 X- And Y-axis

XAXIS Controls numeric labeling and tics on the x-axis.

YAXIS Controls numeric labeling and tics on the y-axis.

AXATIC Sets number of large tics automatically for x and y.

AXLABP Locates axis labels at top/bottom or left/right of plot.

AXLEN Sets axis lengths.

AXLINT Sets label interval for axes.

AXLSZE Sets axis label heights.

AXNMTC Sets number of small tics between large tics on axes.

AXNSIG Sets no. significant digits in numeric axis labels (auto only).

AXSET Allows omission of plotting of any axis.

AXTYPE Sets axis type for x- and y-axis.

TICS Sets axis tic characteristics

XFOR Sets format of x-axis numeric labels.

YFOR Sets format of y-axis numeric labels.

XLAB Sets label of x-axis.

YLAB Sets label of y-axis.

Appendix B Sec4.2.2 Time Axis

TIME Sets start and end of time axis, start time of data.

TAXIS Sets time axis on, sets time series delta-t (minutes),orients axis.

TXLABP Establishes time axis label position (or absence).

TXLINT Specifies which tics will be labeled.

TXLSZE Sets height of time axis labels.

TXNMTC Sets number of small tics between large tics.

TXTYPE Sets type and style of time axis.

Appendix B Sec4.3 LABELS

LABS Makes a moveable label (up to 25 labels allowed).

HLABS Sets height of each moveable label.

RLABS Sets angle for each moveable label.

LABSET Sets character heights for labels.

LLABS Sets start position for a line to location of each moveable label. Draws a line from the label to
a point.

CONPRE Sets prefix for contour labels (characters, color, font).

CONPST Set suffix for contour labels (characters, color, font).

TITLE Sets and clears main plot label (without making a plot).

XLAB Sets label of x-axis.

YLAB Sets label of y-axis.

Appendix B Sec4.4 COMMAND PROCEDURES

@ Initiates reading of commands from a PPLUS command file.

DEC Decrements a counter.

INC Increments a counter.

IF Block IF statement.

ELSE Block IF statement.

ENDIF Block IF statement.

WHILE WHILE loop construct.

ENDW WHILE loop construct.

SET Sets the value of a PPLUS symbol.

SHOW Shows the value of a PPLUS symbol.

LISTSYM Lists values of defined PPLUS symbols.

Appendix B Sec4.5 COLOR AND FONTS

 Commands to change the pen number or the character font can be embedded in any labels character
string. See the preceding section for label commands and the chapter on LABELS.

@Pn Sets pen number "n" when embedded in a label.

@Cnnn Sets color to number "nnn" when embedded in a label.

PEN Sets pen number for each data line.

DFLTFNT Sets default character font for all labeling.

LEV Sets pen numbers (colors) for contour plots.

Appendix B Sec4.6 PLOT APPEARANCE

 The following commands control various aspects of the plot's appearance.

ORIGIN Sets distance of plot origin from lower left corner of the box.

SIZE Sets size of entire plotting region.

BOX Controls drawing of a box around the entire plotting region.

CROSS Controls drawing of lines through the point x=0, y=0 on graph.

LINE Sets characteristics for each X-Y plot line.

MARKH Sets character size for each X-Y plot line marks.

MULTPLT Allows a composite of several plots (all kinds) on onepage.

ROTATE Rotates plot by 90 degrees on screen and plotter.

Appendix B Sec4.7 PLOT GENERATION

The following commands select the plot type and generate the plot.

PLOT Plots x-y pairs for all lines of data.

PLOTUV Makes stick plot of vector data for U,V pairs in line1.

PLOTV Makes stick plot of vector data for U in line1 and V in line2.

CONTOUR Makes contour plot.

VIEW Makes a 3-D surface plot.

VPOINT Sets the viewpoint for a 3-D surface plot.

VECTOR Makes a plot of a vector field

VELVCT Makes vector plot of U,V pairs located at X,Y locations.

MULTPLT Allows a composite of several plots (all kinds) on one page.

Appendix B Sec4.8 DATA MANIPULATION

LINFIT Does a linear least squares fit on data already in a line and inserts the least squares line into
the next available line.

TRANSXY Applies a linear transformation to variables x and y.

SMOOTH Controls smoothing of contour type data.

LIMITS Sets testing values for good data points.

WINDOW Controls windowing of data within axis bounds.

Appendix B Sec4.9 HELP

HELP VAX/VMS on-line help for PPLUS.

HLP Access on-line help from within PPLUS.

Appendix B Sec5 BEGINNERS GUIDE

To use PPLUS a minimum of preparation is required. See the chapter on Getting Started for the
symbol definitions that are required. Once this has been done PPLUS can be entered by typing PPLUS
(or just PPL) in response to the VAX/VMS prompt.

The minimum number of commands needed to read in data and then plot the data are: FORMAT
(sets the input format), SKP (a command to position the file to a given record). VARS (tells PPLUS
 how the data is arranged in each data record), RD (reads the data) and PLOT (create the plot) or
CONTOUR (create a contour plot). The name of the file containing the data can be specified with the
RD or SKP commands. Following are discussions of these commands and some examples of how
these commands are used. For more information see the Command Description chapter.

Appendix B Sec5.1 FORMAT

FORMAT informs PPLUS the type of the data file and the format the data has within this file. Valid
formats are:

 UNF -- the data is unformatted (data type REAL)

 FREE -- the data is formatted and in free form

 (xxx) -- the data is formatted with a format of xxx, where xxx is a legal FORTRAN format, i.e., (3F10.2)

Appendix B Sec5.2 5.2 VARS

The next command you need to know about is VARS. VARS is a complicated command because it
allows great flexibility in the organization of the data within each file record. Position of the
 characters 1, 2, and 3 within the command line indicates the position of the X, Y, and Z variables

 within the data record. The format of the command is:

 VARS,NGRP,A1, ... ,Ai

 where i is the number of data values per data group

NGRP = number of groups per record. For example, if the data file has Depth,Temperature pairs packed
3 pairs per record with a format of 3(F6.1,F6.2) then NGRP=3.

Aj = 1, 2, 3 or blank to indicate that the variable in this position within the group is to be plotted as X (Aj
= 1), Y (Aj = 2), Z (Aj = 3), or is not to be read at all (Aj = blank). An example will make this clearer.

 EXAMPLE: VARS,1,,2,1

 First arg is 1 --> there is only 1 group per record (e.g. 1 scan per line of data) in the data file

 Second arg is blank --> Variable 1 in the data record is not to be read. (A1 = blank)

 Third arg is 2 --> Variable 2 in the data record is to be plotted as Y (A2 = 2)

 Fourth arg is 1 --> Variable 3 in the data record is to be plotted as X (A3 = 1)

 No variable is to be read as Z.

The default is VARS,1,1,2 (i.e. one group per record, first variable is X, second is Y)

The following are examples of the VARS command.

VARS,1,,,1 tells PPLUS that there is one group of data per>record and to read the third number
 in the record as the X variable. Since no Y variable location has been specified the Y variable will
contain the sequence number. VARS,5,1,2 lets PPLUS know that there are five groups of data pairs
 per record. Again the X variable is first and the Ysecond.

VARS,1,1,2,3 informs PPLUS that the data is X,Y,Z triplets with one group per record. The
fact that X,Y, and Z appears tells PPLUS that the data is not on a regular grid and PPLUS should
 place it on an even grid. The method used to place the data on a regular grid and the grid itself are
determined by the RD and CONSET commands.

VARS,1,,,,2,1 tells PPLUS that there is one group of data per record where the Y variable is the
fourth number and the X the fifth number in the record.

VARS,1,3 tells PPLUS that there is one group of data per record and Z is the only variable in the
group. This is for contour data which is already gridded. The RD command defines how the data is
stored, i.e., which index varies fastest.

Appendix B Sec5.3 SKP AND RD

The name of the file containing the data to be plotted can be specified with either the SKP or the RD
command. The SKP command tells PPLUS to skip records in the data file (e.g., header records or
data which should not be plotted). Its format is SKP,N,FILE_NAME where N is the number or records
to skip, and FILE_NAME is the name of the data file and is an optional parameter. If the name of
the data file is included, the data file will be rewound before skipping. If the data file name is
omitted, the file will not be rewound before skipping.

The RD command informs PPLUS how many records to read and what file to read them from. If
you are not making a contour plot, the format of the command is RD,NX,FILE_NAME where NX is
the number of points to read from the data file and FILE_NAME is the name of the data file and is an
optional parameter. If the data file name is included, the data file will be rewound before the data is
read. If the data file name is omitted, the file will not be rewound before reading.

If you are making a contour plot, the RD command format is somewhat different. If Z is being read
 (a 3 in the VARS command), RD defines the size of the plotting grid and prompts the user for the
minimum and maximum values of X and Y to be used for the plotting grid. The format for RD is

RD,NX,NY,TYPE,FILE_NAME where NX and NY set the size of the grid for contour data read.
 Specifically, when X,Y,Z triplets are being read for contouring, the grid on which the data is plotted
can be either coarser or finer or the same as the input data. If NX=50 and NY=21, then the data will be
plotted on a grid which is 50 x 21 points (regardless of input data limits or gridding). TYPE tells
 PPLUS whether the data is stored by rows (X varies fastest) or columns (Y varies fastest) if the data is
already-gridded contour data. Finally, FILE_NAME is the data file name. If the data file name is
included, the data file will be rewound before the data is read. If the data file name is omitted, the file
will not be rewound before reading.

Appendix B Sec5.4 PLOT AND CONTOUR

PLOT or CONTOUR initiates plotting. An optional label can be included and this label will be used
to title the plot. The label must start with a non-numeric character. See following section on labels.

Appendix B Sec5.5 EXAMPLES

All the examples in this section can be typed in while running PPLUS interactively after typing
PPLUS in response to the VAX/VMS prompt. Just be sure you have first defined the PPLUS symbols
 according to the Getting Started chapter before you try to do this. Once the plot appears on your
terminal, enter <CR> to exit from graphics mode and continue. To exit from PPLUS, type EXIT.

Appendix B Sec5.5.1 Unformatted Data, X-Y Plot

The following example reads in data from an unformatted filewith one group of data per record. The
data to be plotted has Xin the second position and Y in the first. The data file has 296data points in it
but we will read only 100 at a time. The datafile also has an 8 record header that contains character data
andmust be skipped.

ppl>FORMAT UNF

ppl>VARS,1,2,1

ppl>SKP,8,PPL$EXAMPLES:DEEP3000.AVG

ppl>RD,100

ppl>PLOT,The first 100 data points

ppl>RD,100

ppl>PLOT,The second 100 data points

Appendix B Sec5.5.2 Pre-gridded Data, Contour Plot

The next example illustrates reading in data to be contoured. The data file is unformatted and
does not have any header. The data is already gridded with 1 value of Z per record. Since only Z
is read from the data file, the input grid and the plotting grid must be identical, and are specified by the
 RD command. The grid is 34 points in the x-direction and 5 points in the y-direction. The PPLUS
RD command prompts for the minimum and maximum for the X-Y contouring grid. In this
 example, the grid is 34 points in the x-direction from 10 to -6.5 units and is 51 points in the y-direction
from 0 to -500 units. PPLUS will read Z values from the data file assuming x varies fastest. This
 means that the Z values on the data file correspond to the following x,y pairs:

 x y
 10.0 0
 9.5 0
 9.0 0
 .
 .
 -6.5 0
 10.0 -10
 9.5 -10

 9.0 -10
 .
 .
 -6.5 -10
 .
 .

ppl>FORMAT,UNF

ppl>VARS,1,,3

ppl>RD,34,51,1,PPL$EXAMPLES:CTDDAT.DAT

ENTER XMIN,XMAX,YMIN,YMAX

rd>10,-6.5,0,-500

ppl>CONTOUR,A test plot for contouring

Appendix B Sec5.5.3 Ungridded Data, Contour Plot

This example shows the reading in of ungridded contour data. The data is unformatted with Y,X,Z the
order of the triplets. We define the grid for plotting to be 22 x 11 with X and Y limits of 1,22 and -
.033,.0576. Although the data file contains less than 1000 points, we can give PPLUS a much larger
number to read, and it will stop at the end-of-file without error.

ppl>FORMAT,UNF

ppl>VARS,1,2,1,3

ppl>RD,22,11,PPL$EXAMPLES:GRIDWI.FMT

ENTER NUMBER PTS TO READ

rd>1000

ENTER XMIN,XMAX,YMIN,YMAX

rd>1,22,.033,.567

ppl>CONTOUR,An example of contouring with ungridded data

Appendix B Sec5.5.4 Time Series Plot

This example demonstrates the reading in of time series data and setting up the x axis to be a time
axis. The data file contains a sequence number, which is the day of the year or Julian Day and
temperature. Since the sequence number increments by 1 for 1 day, and delta-time is 1 day by default
 in PPLUS, there is no need to include the delta-time in the TAXIS command. The TAXIS command
 tells PPLUS that the time series has a delta-time of 1440 minutes (the default) and that the time
axis is to be turned on. (The alternate form of the TAXIS command would be "taxis,1440,on".) The
TIME command tells PPLUS that the time axis will start at 0000 1 Jul 85, end at 0000 1 Dec 85, and
 that a sequence number of 1 corresponds to a time of 1200 1 Jan 85. The YLAB command sets the y-
axis label. The LIMITS command tells PPLUS to omit data where Y = 0. The VARS command is
not needed since the data is formatted with one group of data per record, with the X variable first
and the Y variable second, which is the VARS command default. The CROSS command suppresses
 the drawing of a solid line through x=0, y=0 on the plot. The BOX command suppresses the drawing
of a box around the entire plotting region. The SKP command names the data file and skips past the
5 header records at the beginning of the data file. The RD command reads the data. The PLTYPE
command sets the plotting medium to be both Tektronix compatible and binary suitable for routing to
 hardcopy devices. The PLTNME sets the name of the output plot file. The PLOT command generates
the plot. See the Command Description chapter for a full description of all PPLUS commands.

ppl>format (17x,f3.0,7x,f5.0)

ppl>taxis,on

ppl>time,W8507010000,W8512010000,W8501011200

ppl>ylab,Air Temperature

ppl>limits,0,yeq,on

ppl>cross,0

ppl>box,off

ppl>skp,5,ppl$examples:atlas.dat

ppl>rd

ppl>pltype,2

ppl>pltnme,atlas.plt

ppl>plot,ATLAS Air Temperature at 2N 165E

Additional examples are in the directory PPL$EXAMPLES in the form of PPLUS command files,
which are the files with extension .PPC. Use the VAX/VMS command "DIR
 PPL$EXAMPLES:*.PPC" to see what the file names are. You can run these command files with

 the VAX/VMS command "PPLUS PPL$EXAMPLES:xxx.PPC", where xxx is the name of the
 PPLUS command file. The file will generate a plot on your terminal. Enter a <CR> to exit from
 graphics mode and return to the VAX/VMS prompt. (Be sure that you have first defined the PPLUS
 symbols according to the Getting Started chapter before you do this.) See the chapter on Command
Files for more information about using PPLUS command files.

You can copy these PPLUS command files to your own directory with the VAX/VMS command
"COPY PPL$EXAMPLES:*.PPC []". Then you can run them with the VAX/VMS command "PPLUS
xxx.PPC", where xxx is the name of the PPLUS command file. You can experiment with PPLUS
commands by editing the PPLUS command file to change the appearance of the plot, and then run
PPLUS again with your new command file.

Appendix B Sec6 ROUTING PLOT FILES

Appendix B Sec6.1 VAX/VMS

Appendix B Sec6.1.1 Plot Files And Mom

PPLUS plot files are named ZETA.PLT by default (this can be changed with the PLTNME
 command). A graphics postprocessor called MOM is available to reformat these binary plot files and
 route them to a graphics device. MOM submits a batch job to BETA$LOPRI or BETA$BATCH.
 When the batch job has finished, the original plot files will have been renamed from file.ext to
 file.PLT_HHMMSS, and the plots queued to the appropriate device. A log file with the name
MOM_HHMMSS.LOG is placed in the original directory when the MOM option /LOG is selected.

The command is (brackets [] enclose optional information):

 MOM [arg1 [arg2 ...]]

The arguments for MOM are order independant and are separated by spaces. The arguments are:

 [F[ILE]=]file name (default ZETA.PLT)

 [D[EVICE]=]device (e.g. TEK, VER etc, default VER)

 S[CALE]=scale factor (default 1)

 G[RACE]=grace distance (inches, default = 0.25)

 W[IDTH]=width (paper width CAL only, default = 11.5)

 C[PLOT]="cplot arguments" (CPLOT parameters CAL only, default=NULL)

 [NO]ROT[ATE] (rotate the plot, default NOROT)

 [NO]CEN[TER] (center the plot, default CENTER)

 /[NO]SAVE (save the input file, default /SAVE)

 /[NO]LOG (create a batch log file, default /NOLOG)

 /SMALL, /LARGE or /TRANS (type of hard copy made, default /SMALL)

 File names which are the same as a legal device name (e.g. VER, TEK, etc.) are not allowed. The file
name can contain any wild carding that is valid with the VAX/VMS rename command. The default file
extension is .PLT.

Appendix B Sec6.1.2 Plotting Devices

VER Batch plot on Versetec V80 printer/plotter

TEK Interactive plot on Tekronix compatible terminal

CPY Batch plot on Tekronix 4691 hardcopy unit

CAL Batch plot on CALCOMP plotter

HP Batch plot on HP7550A plotter

LN03 Batch plot on TMAP1:: LN03 printer/plotter

HPT Batch plot on TMAP1:: HP7475

Appendix B Sec6.1.3 Examples

 1) $MOM question

Will cause MOM to prompt for inputs. If the CPLOT argumentis a ? you are then prompted for the
CPLOT inputs.

 2) $MOM CTD110W VER SCALE=1.25 ROTATE

Will instruct MOM to create a VERSATEC plot from the metafile CTD110W.PLT, rotate the plot
90 degrees on the paper and rescale the plot by a factor of 1.25.

 3) $MOM CAL CPLOT=""

Will have MOM create a CALCOMP plot using ZETA.PLT and cal lCPLOT with the default
parameters. If CPLOT is omitted then MOM will prompt for the CPLOT command line (omitting
CCFILE).

4) $MOM TEMP.PLT;* CAL CPLOT="/P1=BLK:.3"

Will cause MOM to send all the versions of TEMP.PLT to the CALCOMP with operator instructions to
have pen 1 be black ink pen of 0.3 mm width.

5) $MOM HP *.MYPLOT;* /TRANS

Will send all plots with extension .MYPLOT to the HP7550 plotter with operator instructions to plot
on transparencies.

Appendix B Sec7 PPLUS COMMAND FILES

Appendix B Sec7.1 INTRODUCTION

PPLUS can be run using a PPLUS command file that contains the same commands used by PPLUS
interactively. The file can have any name or extension, but the default extension is .PPC. To run a
PPLUS command file named CMD.PPC, you can enter PPLUS by typing PPLUS CMD.PPC in response
to the VAX/VMS prompt, or you can enter PPLUS in the usual way and give the PPLUS command
@CMD.PPC. (See @ in the chapter on Command Description.)

Each time PPLUS is used, an echo file (named ECHO.DAT by default) is generated. This file can
be edited (it should be renamed) with any VAX text editor and used as a PPLUS command file in
subsequent PPLUS sessions.

Appendix B Sec7.2 SYMBOL SUBSTITUTION

PPLUS allows symbol substitution in a manner similar to VAX/VMS symbols. Global and local
 symbols are supported in conjunction with nested command files and parameter passing. The SET and
SHOW commands create, modify and list the symbols. When initially entering PPLUS (i.e., at the first
command level) the symbols are global and available to all command levels. At each subsequent
command level, local symbols are created and used by default. Global symbols are used when no
local symbol exists. If the symbol name is preceded by a star (*), the global symbol will be created,
modified or substituted.

 Parameters passed via the @ command line are named P1, P2, P3, etc... just as they are in VAX/VMS.
 Symbols are recognized by PPLUS by being enclosed by single quotes. Character strings can be
enclosed in double quotes. For example:

 SET TEMP "This is a test label"
XLAB 'temp'

 will have the same effect as:

 XLAB This is a test label

Several symbols are predefined. 'DATE' and 'TIME' and contain the current date and time. Date
and time formats are dd-mmm-yy and hh:mm:ss. In addition, P1 through Pn are also predefined if
 the corresponding argument was passed via the @ command. For example, the command procedure
PLOTIT.PPC could be executed in PPLUS by typing @PLOTIT 110W Temperature. Then in the
procedure PLOTIT, the symbol P1 will have the value "110W" and the symbol P2 will have the value
"Temperature".

Symbols can also be defined and used in an array format, i.e., 'P(3)' will get symbol P3 and
'label(12)' will access symbol LABEL12.

To have a single quote (') in the symbol or command line two single quotes must be used (''). To have a
double quote (") in the command line two double quotes ("") are required.

Here is a sample PPLUS command file which demonstrates some of the new, powerful PPLUS features.
 In this example, the symbol P1 has the value 110W.

 pltnme,'p1'.plt
format,(f5.0,15x,f15.0)
vars,1,1,2
skp,1,'p1'.dat
rd,60
debug,on
show p1
debug,off
plot,@TRMonthly data 1979-83 at 'P1' ('date' 'time')

The proceeding PPLUS command file (named PLOTIT.PPC) could be called repeatedly in PPLUS
 for different data files named 110W.DAT, 140W.DAT, etc. by entering the PPLUS commands

 @PLOTIT 110W, @PLOTIT 140W, etc. The resulting plot files, ECHO.DAT files and graphs
would be identified by the data file names of 110W, 140W, etc. The graph title will also include the
time and date when the graph was made.

Appendix B Sec7.3 GENERAL GLOBAL SYMBOLS

The global symbols set by PPLUS to allow information to be available in the command procedure are:

command SYMBOL COMMAND DESCRIPTION

 DATE The current date dd-mmm-yy

 PPL$COMMAND_FILE @ The current command file name.

 PPL$EOF RD,RWD,SKP "YES" if an EOF was read.

 PPL$FORMAT FORMAT The current format.

 PPL$HEIGHT SIZE Height of the box.

 PPL$INPUT_FILE RD,SKP,RWD The current input file.

 PPL$LF_A LINFIT Constant from fit y= a + b*x

 PPL$LF_A_STDEV LINFIT Standard error of A.

 PPL$LF_B LINFIT Constant from fit.

 PPL$LF_B_STDEV LINFIT Standard error of B.

 PPL$LF_R2 LINFIT Regression coefficient squared.

 PPL$LF_RES_VAR LINFIT Residual variance.

 PPL$LF_VAR LINFIT Total variance.

 PPL$LINE_COUNT - The number of the last line

 read.

 PPL$PLTNME PLTNME The name of the plot file.

 PPL$RANGE_INC %RANGE See Advanced Commands Chapter

 PPL$RANGE_HIGH %RANGE See Advanced Commands Chapter

 PPL$RANGE_LOW %RANGE See Advanced Commands Chapter

 PPL$TEKNME TEKNME The name of the tektronix file.

 PPL$VIEW_X VPOINT X viewpoint

 PPL$VIEW_Y VPOINT Y viewpoint

 PPL$VIEW_Z VPOINT Z viewpoint

 PPL$WIDTH SIZE Width of the box.

 PPL$XFACT(n) TRANSXY Xfact for line n.

 PPL$XLEN AXLEN Length of X axis.

 PPL$XOFF(n) TRANSXY Xoff for line n.

 PPL$XORG ORIGIN Distance between origin and left

 edge.

 PPL$XFIRST(n) - X value for first data point in

 line n.

 PPL$XLAST(n) - X value for last data point in

 line n.

 PPL$XMAX RD Xmax of contour grid

 PPL$XMIN RD Xmin of contour grid

 PPL$XMAX(n) - Xmax for valid data in line n.

 PPL$XMIN(n) - Xmin for valid data in line n.

 PPL$YFACT(n) TRANSXY Yfact for line n.

 PPL$YLEN AXLEN Length of Y axis.

 PPL$YOFF(n) TRANSXY Yoff for line n.

 PPL$YORG ORIGIN Distance between origin and

 bottom edge.

 PPL$YFIRST(n) - Y value for first data point in

 line n.

 PPL$YLAST(n) - Y value for last data point in

 line n.

 PPL$YMAX RD Ymax of contour grid

 PPL$YMIN RD Ymin of contour grid

 PPL$YMAX(n) - Ymax for valid data in line n.

 PPL$YMIN(n) - Ymin for valid data in line n.

 PPL$ZMAX - Zmax for valid contour data.

 PPL$ZMIN - Zmin for valid contour data.

 TIME - The current time hh:mm:ss

Appendix B Sec7.4 EPIC GLOBAL SYMBOLS

 The following global symbols set by PPLUS contain information from EPIC time series data
headers:

 SYMBOL COMMAND DESCRIPTION

 PPL$EPIC_COMMENT_DATA(n) RD Data comment from header.

 PPL$EPIC_COMMENT_FIRST(n) RD Data comment from header.

 PPL$EPIC_COMMENT_SECOND(n) RD Data comment from header.

 PPL$EPIC_DEPTH(n) RD Depth of measurement.

 PPL$EPIC_DESCRIPT(n) RD EPIC series descriptor.

 PPL$EPIC_EXPERIMENT(n) RD Experiment identifier.

 PPL$EPIC_LATITUDE(n) RD Latitude.

 PPL$EPIC_LONGITUDE(n) RD Longitude.

 PPL$EPIC_MOORING(n) RD Mooring identifier.

 PPL$EPIC_PROJECT(n) RD Project identifier.

 PPL$EPIC_XLAB(n) RD X-axis label.

 PPL$EPIC_YLAB(n) RD Y-axis label.

 The following global symbols set by PPLUS contain information from EPIC CTD data
headers:

 SYMBOL COMMAND DESCRIPTION

 PPL$EPIC_CAST(n) RD CTD Cruise and Cast identifier

 PPL$EPIC_COMMENT_FIRST(n) RD Data comment from header.

 PPL$EPIC_COMMENT_SECOND(n) RD Data comment from header.

 PPL$EPIC_DATE(n) RD CTD Cast Date (GMT)

 PPL$EPIC_LATITUDE(n) RD Latitude.

 PPL$EPIC_LONGITUDE(n) RD Longitude.

 PPL$EPIC_XLAB(n) RD X-axis label.

 PPL$EPIC_YLAB(n) RD Y-axis label.

The following global symbol set by PPLUS contains information about the EPIC data file:

 SYMBOL COMMAND DESCRIPTION

 PPL$EPIC_DATAFILE(n) RD Data file name

 PPL$INPUT_FILE RD EPIC/pointer file

Appendix B Sec7.5 COMMAND FILE LOGIC

There are several commands that enable the user to make command files more like small
 programs. These commands are similar to FORTRAN's block IF and C's WHILE loops. Commands
have been introduced that enable the user to increment and decrement a counter stored in a symbol by
one. In order to make command files more readable leading blanks and tabs are ignored.

The syntax for the PPLUS commands is given in the Command Description chapter.

EXAMPLES:

In this example, PPLUS is exited when an end-of-file is encountered by the RD command. This
illustrates both the block IF and the use of the global PPLUS symbol PPL$EOF.

RD

IF PPL$EOF .EQ. "YES" THEN

 EXIT

ENDIF

In the following example, the size of the plot is set to val by val inches if the value of the symbol val is
less than or equal to 13 otherwise the size is set to 13 x 13.

IF VAL .LE. 13 THEN

 SIZE 'VAL' 'VAL'

ELSE

 SIZE 13 13

ENDIF

In the next example, if P1 is null then P1 is set to TEMPORARY.PLT and then the plot name is set to the
value of the symbol P1.

IF P1 .EQ. "" THEN

 SET P1 TEMPORARY.PLT

ENDIF

PLTNME 'P1'

This WHILE loop results in 10 plots of 100 points each from data file DLDK1039.DAT.
(PPL$LINE_COUNT is a PPLUS defined symbol for the sequence number of the last data line read.)

SKP,DLKD1039.DAT

WHILE PPL$LINE_COUNT .LE. 10 THEN

 RD,100

 PLOT

ENDW

Appendix B Sec7.6 ARITHMETIC

Simple arithmetic can be performed using PPLUS symbols. The commands that perform these function
are SET, INC and DEC. The INC and DEC functions are primarily used to increment and
decrement counters in WHILE loops. The following WHILE loop uses the counter to set the line type to
a solid line for each line to be plotted (PPL$LINE_COUNT is a PPLUS defined symbol for the
number of the last data line read):

SET COUNT 1

WHILE COUNT .LE. PPL$LINE_COUNT THEN

 LINE,'COUNT',,0

 INC COUNT

ENDW

The SET command can be used to perform simple arithmetic on PPLUS symbols. The syntax for these
arithmetic expressions have the form:

 num1 op num2,

where op is +, -, * or / (addition, subtraction, multiplication or division) and num1 and num2 are
numbers. The numeric values must be separated from the operator op by spaces. The string will be
 used exactly as it appears if enclosed by double quotes ("). The following example centers a moveable

label 0.5 inches above the top axis (PPL$XLEN and PPL$YLEN are PPLUS symbols for the X and Y
axis lengths):

SET XPOS 'PPL$XLEN' / 2.0

SET YPOS 'PPL$YLEN' + 0.5

LABS/NOUSER,1,'XPOS','YPOS',0,"A centered label"

Appendix B Sec7.7 SYMBOL ARRAYS

As described in the SYMBOL SUBSTITUTION section, PPLUS symbols can be defined and used
as arrays. There are several general PPLUS global symbols which are also defined as arrays, such as
 PPL$XLAST(n) and PPL$YLAST(n), the last x and y values for data line n. The array index, in
parentheses, can be either a number or a PPLUS symbol. Examples will illustrate this.

The following piece of a PPLUS command file uses moveable lables to write the line number to the
right of the last point plotted for the last line read in. It uses the global PPLUS symbols
PPL$XLAST(n), PPL$YLAST(n) and PPL$LINE_COUNT.

SET XPOS 'PPL$XLAST(PPL$LINE_COUNT)'

SET YPOS 'PPL$YLAST(PPL$LINE_COUNT)'

LABS 'PPL$LINE_COUNT','XPOS','YPOS',-1,'PPL$LINE_COUNT'

The array index can also be a user defined symbol. In the following example, the array MON contains
the names of the first 3 months of the year. The graph title will be "Daily Values for the Month of
FEBRUARY".

set mon(1) "JANUARY"

set mon(2) "FEBRUARY

set mon(3) "MARCH"

.

.

.

set count 2

.

.

.

plot,"Daily Values for the Month of 'mon(count)'

The index of an array (inside parentheses) will be interpreted according to the following rules:
 1) if it is a number, that number will be used as the array index, 2) if it is not a number, it will be
interpreted as a symbol, 3) if it is in single quotes, it will be interpreted as a symbol.

Appendix B Sec7.8 SPECIAL FUNCTIONS

The functions described in this sections are all accessed with the SET command. They can be
accessed only with the SET command. The functions enable string manipulation and formatting within
 PPLUS symbol values. The PPLUS functions are similar to some of the VAX/VMS lexical functions.

The general syntax is :

SET sym $function (arg1, arg2,...),

where "sym" is the symbol set by the function and "function" is the name of the PPLUS function.
 PPLUS functions and their arguments are described in the following sections. Where function
 arguments are indicated as symbols, they must be PPLUS symbols and cannot be strings. Where
 function arguments are indicated as strings, they can be enclosed in double quotes.

Appendix B Sec7.8.1 $EDIT

The command is :

SET sym_out $EDIT (sym_in, arg1 [arg2 arg3...])

where:

sym_out = symbol set by the function

sym_in = symbol on which function is to work

arg1 = UPCASE - changes string in sym_in to upper case

 = TRIM - trims leading and trailing blanks from sym_in
 = COMPRESS - removes extra blanks from sym_in (reduces each group of blanks to a single
blank)
 = COLLAPSE - removes all blanks from sym_in

If multiple arguments are used, they can be separated by blanks, e.g., SET sym $EDIT(sym_in,UPCASE
COLLAPSE). If commas are used as separaters, the entire set of arguments must be enclosed in quotes,
e.g.,
SET sym $EDIT(sym_in,"UPCASE,COLLAPSE").

 Example:

SET S1 "depth"

SET S2 $EDIT (S1,UPCASE)

This results in S2 having the value "DEPTH".

Example:

SET S1 " depth "

SET S2 $EDIT (S2,UPCASE TRIM)

This results in S2 having the value "DEPTH".

Appendix B Sec7.8.2 $EXTRACT

 This function extracts selected characters from the input string. The first character in the string is in
position 1. The command is :

SET sym_out $EXTRACT (start,length,sym_in)

where:

sym_out = symbol set by the function

start = starting character position

length = length of character string to be extracted

sym_in = symbol on which function is to work

Example:

SET S1 "February"
SET S2 $EXTRACT(1,3,S1)

This results in S2 having the value "Feb".

Appendix B Sec7.8.3 $INTEGER

This function converts a number to integer format. The command is :

SET sym_out $INTEGER (sym_in)

where:

sym_out = symbol set by the function

sym_in = symbol on which function is to work

Example:

SET MON 1
.
.
INC MON
SET INT_MON $INTEGER(MON)

In this example, the symbol MON has been incremented, and will have the value "2.00". The symbol
INT_MON will have the value "2".

Appendix B Sec7.8.4 $LENGTH

 This function returns the length of the input string. The command is :

SET sym_out $LENGTH (sym_in)

where:

sym_out = symbol set by the function

sym_in = symbol on which function is to work

Example:

SET S1 "February"
SET S2 $LENGTH(S1)

This results in S2 having the value "8".

Appendix B Sec7.8.5 $LOCATE

 This function locates a substring in the input string. The first character in the string is in position 1.
 The command is :

SET sym_out $LOCATE (substrg,sym_in)

where:

sym_out = symbol set by the function

substrg = string to be located

sym_in = symbol function on which function is to work

Example:

SET S1 "JAN 21,1987"
SET S2 $LOCATE(",",S1)

This results in S2 having the value "7".

Appendix B Sec7.8.6 $ELEMENT

This function extracts an element from an input string in which the elements are separated by a
specified delimiter. The command is :

SET sym_out $ELEMENT (pos,delim,sym_in)

where:

sym_out = symbol set by the function

pos = position of element to be extracted

delim = delimiter

sym_in = symbol on which function is to work

Example:

SET MONTH "JAN/FEB/MAR/APR/MAY/JUN/JUL"
SET MON $ELEMENT(3,"/",MONTH)

This results in MON having the value "MAR".

Example:

SET MONTH "JAN/FEB/MAR/APR/MAY/JUN/JUL"
SET COUNT 1
WHILE COUNT .LE. 7 THEN
 SET MON(COUNT) $ELEMENT('COUNT',"/",MONTH)
 INC COUNT
ENDW

This results in MON(1) = "JAN", MON(2) = "FEB", MON(3) = "MAR", MON(4) = "APR", MON(5) =
"MAY", MON(6) = "JUN", MON(7) = "JUL".

Appendix B Sec7.9 LABELS

Appendix B Sec7.9.1 AXIS LABELING

Commands affecting the labeling of the axes are:

XAXIS Controls numeric labeling and tics on the x-axis.

YAXIS Controls numeric labeling and tics on the y-axis.

AXATIC Sets number of large tics automatically for x and y.

AXLABP Locates axis labels at top/bottom or left/right of plot.

AXLEN Sets axis lengths.

AXLINT Sets label interval for axes.

AXLSIG Sets axis label heights.

AXNMTC Sets number of small tics between large tics on axes.

AXNSIG Sets no. significant digits in numeric axis labels (auto only).

AXSET Allows omission of plotting of any axis.

AXTYPE Sets axis type for x- and y-axis.

XFOR Sets format of x-axis numeric labels.

YFOR Sets format of y-axis numeric labels.

XLAB Sets label of x-axis.

YLAB Sets label of y-axis.

The numeric axis labels are drawn such that zero will be labelled if it occurs between the low and
high axis limits. If zero does not occur, then the first large tic (from the bottom or left) will be labelled.
 The large tics are forced to occur at integer multiples of the tic interval.

Appendix B Sec7.9.2 EMBEDDED STRING COMMANDS

Fonts

All labels in PPLUS can be plotted using any one of 21 character fonts and 11 symbol fonts. The
default font is SR (Simplex Roman) and other fonts are called by preceding their two letter abbreviation
 by an @, i.e., @CI for complex itallic.

Symbol fonts are called by using the symbol number, i.e., @MA01 plots the first symbol in MATH
and @MA12 will plot the twelfth symbol. Font changes (of the form @XX) can be imbedded in any
label string (e.g., XLAB, YLAB, PLOT commands).

 @font selects "font" as the character or symbol font to be used, where the font abbreviations are listed
below.

 Character Fonts

Tables showing these fonts are linked to the web page:

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_char_fonts.html

SR Simplex Roman (default)

DR Duplex Roman

TR Triplex Roman

CR Complex Roman

AS ASCII Simplex Roman

AC ASCII Complex Roman

CS Complex Script

TI Triplex Italic

GE Gothic English

IR Indexical complex Roman

SS Simplex Script

CI Complex Italic

II Indexical complex Italic

SG Simplex Greek

CG Complex Greek

IG Indexical complex Greek

GG Gothic German

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_char_fonts.html#_TN_Ref_viewaxes_b

GI Gothic Italian

CC Complex Cyrillic

AR Cartographic Roman

AG Cartographic Greek

Symbol Fonts

Tables showing these fonts are linked to the web page:

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_symbol_fonts.html

ZO Zodiac

MU Music

EL Electrical

WE Weather

MA Math

SM Simplex Math

MP Map

LM Large Math

IZ Indexical Zodiac

IM Indexical Math

CA Cartographic

A clear font command @CL is available to change the default font. The next font called after a @CL
becomes the new default font. The font is reset to the default at the start of each label. The
 command DFLTFNT can also be used to change the default font to one of your choice.

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_symbol_fonts.html#_TN_Ref_viewaxes_b

Tables showing the symbol fonts are at

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/current/ppl_symbol_fonts.htm

Control characters for the two ASCII fonts AS and AC must be preceded by an <ESC> (ascii
 code=27). For example, to superscript while using the ASCII fonts you must have <ESC> in the
label preceed the character to superscript.

Appendix B Sec7.9.3 Pen Selection

The pen may also be selected by giving the change pen command @Pn, where n is the character 1-
9 and A-G. This allows the selection of up to 16 pens/colors. The color and font is reset to the
default font and previous color after the character string is drawn. The PEN command can be used to
 change the default color by typing PEN,0,default_color.

If you need to select a color index beyond the range of P1 through PG, you can use the change color
command @Cnnn where "nnn" is a 3-digit color index. (It must be 3 digits.)

Appendix B Sec7.9.4 Character Slant

 The slant used in drawing the fonts may be changed by using the command @Zn, where n is the
character 0-9 and A-G. This allows the selection of slant angles from 0 to 45 in 16 increments.
 The slant is reset to zero after the character string is drawn.

Appendix B Sec7.9.5 Subscripting, Superscripting And Back Spacing

An ^ (up arrow) imbedded in any label string will cause the next character to be drawn superscripted, an
_ (underscore) will draw it subscripted, and a \ (backslash) backspaces over the last character drawn.
 The control characters ^, _ and \ are available in the two ASCII fonts AS and AC by preceding the
 control character by an <ESC> (ASCII code=27). For example, to subscript while using the ASCII fonts
you must have <ESC>_ in the label preceed the character to subscript.

Appendix B Sec7.10 DATA FORMATS

Appendix B Sec7.10.1 SEQUENTIAL FORMATS

The format to be used in reading from a sequential file is defined by the commands FORMAT,
VARS, and RD. Some definitions are useful:

 NVAR - the number of variables per group

 NGRP - the number of groups per record

 NREC - the total number of records

For example, if the data consists of depth, u, v, t and the format is 8F10.2 (the format statement must
be for an entire record) with two groups per record, the data would look like

D U V T D U V T

and NGRP=2, NVAR=4.

If you wanted to plot D as the Y variable, T as the X then, FORMAT (8F10.2) would be the correct
 FORMAT command and VARS,2,2,,,1 would be the correct VARS command. (U and V are not read
or plotted.)

However, if the format was F10.2,30X,2F10.2,30X,F10.2 then FORMAT
 (F10.2,30X,2F10.2,30X,F10.2) and VARS,2,2,1 would be appropriate.

If the data is unformatted the meanings of NVAR and NGRP are unchanged. Unformatted data is
specified by the FORMAT command FORMAT,UNF.

Reading will automatically stop at the end of the file and properly store the data.

Appendix B Sec7.10.2 BIBO FORMAT

The BIBO data format consists of data files created using the DSF routines and a 145 word header in
the BIBO format. This data format is in the standard dsf file format for data storage.

Appendix B Sec7.10.3 EPIC FORMAT

 This is the standard format for data from the EPIC data base. The data files are binary sequential

files with at least one header of 8 80-character lines followed by data records with 1 data scan per
record. When the FORMAT,EPIC command is used, the file name specified with the RD, SKP and
RWD commands refers to the EPIC or pointer file. Variables to be read are specified with the EVAR
command. Both time series EPIC data files and CTD EPIC data files are recognized by PPLUS. The
/CTD qualifier on the FORMAT command tells PPLUS which type of EPIC data is being read.

Appendix B Sec7.10.4 DSF FORMAT

This data format is that produced by the DSF routines with the header and data in PPLUS format. The
format must be followed to ensure that PPLUS can interpret the data file read correctly.

A single data file consists of a single header record and any number of data records followed by an
EOF. The header must be either an array or other sequentially organized data set of 38 real variables.
 Below is the expected format.

 INT WORD DESCRIPTION

 1 XPTS

 3 ZMIN first four created by CLSDSF

 5 ZMAX

 7 ZMEAN

 9 XMIN minimum x value (real)

 11 XMAX maximum x value (real)

 13 KX number of x grid points (integer*4)

 15 YMIN minimum y value (real)

 17 YMAX maximum y value (real)

 19 KY number of y grid points (integer*4)

 21 ITYPE data type 0= 2-d set, 1= 1-d set (integer*4)

 23-38 LAB(16) main label hollerith (integer*2)

 39 NCH number of characters is LAB (integer*4)

 41-56 IXLAB(16) x axis label hollerith (integer*2)

 57 NXLB number of characters in IXLAB (integer*4)

 59-74 IYLAB(16) y axis label hollerith (integer*2)

 75 NYLB number of characters in IYLAB (integer*4)

All labels use SYMBEL to generate the plotted characters. The labels are optional, but if not used
they should contain blanks.

ITYPE=0

Data must be stored in a linear array as:

Z(1,1),Z(2,1),...,Z(KX,1),Z(1,2),...,...,Z(KX,KY)

or as a 2-d array where the array is dimensioned as KX,KY.

Assuming the following arrays exist, ITYPE=0 data can be created as follows: HEAD(38),Z(25,50)
NOTE: use EQUIVALENCE to set the integers in the real array.

 CALL OPNDSF(file_name,'WR',ILUN)

 CALL WRHDSF(ILUN,38,HEAD)

 CALL WRDDSF(ILUN,1250,Z)

 CALL CLSDSF(ILUN)

where file_name is the file name and ILUN is the logical unit to be used.

ITYPE=1

Data must be stored as a linear array as:

X(1),X(2),...,X(KX),Y(1),Y(2),...,Y(KX)

in this case KX= length of the series and KY must be set to 1, there must be KX of each X and Y
in the data set. Given,

HEAD(38),X(200),Y(200) KX=100 then,

 CALL OPNDSF(file_name,'WR',ILUN)

 CALL WRHDSF(ILUN,38,HEAD)

 CALL WRDDSF(ILUN,KX,X)

 CALL WRDDSF(ILUN,KX,Y)

 CALL CLSDSF(ILUN)

where KX is the number of pairs. The DSF routines are available in a user library by Task
 building with

DISK1:[DENBO.PPL]OURLIB/LIB.

Appendix B Sec7.11 ADVANCED COMMANDS

This section describes PPLUS primitive plot commands. With these commands, the user can make a
plot with several x- or y-axes. The location of each axis can be specified. To distinguish them
from the standard PPLUS commands, these commands all begin with "%".

These % commands can be entered only from a PPLUS command file, and can not be entered
interactively from the keyboard. Each command is implemented as it is read from the command file.

Specifically, when the %XAXIS command is read from a command file, an x-axis is immediately
drawn on the graph. By contrast, the standard PPLUS XAXIS command simply sets x-axis parameters
and the x-axis is not drawn on the graph until a plotting command such as PLOT is issued. The %
commands give the user great control over the graphics display, but must be used carefully. No PPLUS
error messages are issued for illegal % commands. The % commands can not be used with the
MULTPLT command. See the notes with each command description and the example at the end of this
chapter.

Command descriptions follow.

Appendix B Sec7.11.1 %OPNPLT/qualifier

Opens the plot by putting the terminal into and out of graphics mode and setting /QUIET.

 Valid qualifiers are:

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/OVERLAY which causes the plot to be overlaid without erasing the last plot.

Appendix B Sec7.11.2 %CLSPLT/qualifiers

Closes the plot by putting the terminal out of graphics mode and restoring /QUIET or /NOQUIET,
whichever was in effect when the %OPNPLT command was issued.

Valid qualifiers are:

 /[NO]WAIT

 Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and terminated by
typing a character. If an <ESC> is typed PPLUS will return from the current command level to the
lowest command level. Default = WAIT.

Appendix B Sec7.11.3 %PLTLIN,n

Plots the n-th data line. Each RD command increments the data line count by 1. Use of the
standard plotting commands (PLOT, PLOTUV, PLOTV, CONTOUR, VECTOR, and VIEW) resets the
 data line count. The %PLTLIN command does not reset the data line count. (WINDOW works.)

 n Plot line n using current scale factors.

Appendix B Sec7.11.4 %LABEL/qualifier,x,y,ipos,ang,chsiz,label

Draws a label similar to a moveable label (LABS command). There is no label number and the label
is drawn as soon as the command is read from the command file. Any number of labels may be drawn.

x x position user or inches

y y position user or inches

ipos -1 left, 0 center, +1 right justify

ang Angle at which lable is to o be drawn. (0 degrees is at 3 o'clock and positive
rotation is counter clockwise.)

chsize character size (inches)

label character string to draw

Valid qualifiers are:

/[NO]USER determines units of x and y positions. Default is /USER. If /NOUSER units are inches
from the ORIGIN. (see the ORIGIN command)

Appendix B Sec7.11.5 %RANGE,min,max,ntic

Finds axis limits for use with the %XAXIS and %YAXIS commands given the data extrema of min
and max. The axis limits and tic interval are returned in the PPLUS symbols PPL$RANGE_LOW,
PPL$RANGE_HIGH, and PPL$RANGE_INC.

min minimum value of data to be ranged. Can use PPL$XMIN(n) or
PPL$YMIN(n).

max maximum value of data Can use PPL$XMAX(n) or PPL$YMAX(n).

ntic number of large increments

PPL$RANGE_LOW new minimum range value

PPL$RANGE_HIGH new maximum range value

PPL$RANGE_INC new increment

Appendix B Sec7.11.6

%XAXIS/qualifier,xlow,xhigh,xtic,y[,nmstc][,lint][,xunit][,ipos][,csize][,frmt]

This command draws an x-axis and redefines scaling for the x-direction. The arguments xlow, xhigh,
xtic and y should not be omitted. See the %RANGE command to get default values for axis limits and

increments. If you have used %RANGE, then you can use

PPL$RANGE_LOW, PPL$RANGE_HIGH, PPL$RANGE_INC for xlow, xhigh and xtic.

xlow min value of x user

xhigh max value of x user

xtic large tic increment user

yy position user or inches

nmstc number of small tics

lint label interval (large tics)

 xunit divisor for axis label

 ipos -1 bottom, 0 none, +1 top of label

csize character size inches

 frmt axis format char*20

Valid qualifiers are:

 /[NO]USER determines units of y position. Default is /USER. If /NOUSER units are inches from the
ORIGIN. (see the ORIGIN command)

Appendix B Sec7.11.7 %YAXIS/qualifier,ylow,yhigh,ytic,x[,nmstc][,lint]
[,yunit][,ipos][,csize][,frmt]

This command draws an y-axis and redefines scaling for the y direction. The arguments ylow, yhigh,
ytic and x should not be omitted. See the %RANGE command to get default values for axis limits and
increments. If you have used %RANGE, then you can use PPL$RANGE_LOW, PPL$RANGE_HIGH,
PPL$RANGE_INC for ylow, yhigh and ytic.

ylow min value of y user

yhigh max value of y user

ytic large tic increment user

xx position user or inches

nmstc number of small tics

lint label interval (large tics)

yunit divisor for axis label

ipos -1 left, 0 none, +1 right of label

csize character size inches

frmt axis format char*20

Valid qualifiers are:

/[NO]USER determines units of y position. Default is /USER. If /NOUSER units are inches from the
ORIGIN. (see the ORIGIN command)

Example:

Here is a PPLUS command file which uses all the % routines described above. It can be found in the
directory ppl$examples (PPL$EXAMPLES:CTD4.PPC), and can be executed in PPLUS to generate a
plot.

c
c PPLUS command file to plot EPIC CTD data demonstrating multiple axis
c capability.
c
c It plots Pressure vs Temperature, Salinity, Sigma_t, Oxygen.
c
box,off
window,on
size,8,10.5
origin,,2.3
format/ctd,epic
axlint,1,1
c pltnme,ctd4.plt
c

c First plot P vs T with T axis at top. Supress bottom x axis.
c
evar,t,p
rd,ppl$examples:ctd4
%opnplt
%range/nouser 'ppl$ymin(1)','ppl$ymax(1)',5
yfor,(i7)
yaxis,'ppl$range_high','ppl$range_low','ppl$range_inc'
title

axlabp,1
axset,,0
plot
c
c Plot P vs Salinity with S axis at top above T axis.
c
evar/next sal,p
rd
set ypos 'ppl$ylen' + .7
%range/nouser 'ppl$xmin(1)','ppl$xmax(1)',4
%xaxis/nouser,'ppl$range_low','ppl$range_high','ppl$range_inc',-
'ypos',,,,+1
%pltlin,1
c
c Plot P vs Sigma_t with S_t axis at bottom
c
evar/next sig,p
rd
set ypos 0.
%range/nouser 'ppl$xmin(2)','ppl$xmax(2)',4
%xaxis/nouser,'ppl$range_low','ppl$range_high','ppl$range_inc',-
'ypos',,,,-1
%pltlin 2
c
c Plot P vs Oxygen with O axis at bottom below S_t axis.
c
evar/next ox,p
rd
set ypos 'YPOS' - .7
%range/nouser 'ppl$xmin(3)','ppl$xmax(3)',4
%xaxis/nouser,'ppl$range_low','ppl$range_high','ppl$range_inc',-
'ypos',,,,-1
%pltlin 3
c
c Now use PPLUS EPIC symbols in moveable labels for graph titles
c
set ypost 'ppl$ylen' + 1.9
%label/nouser 0,'ypost',-1,0.,.16,'ppl$epic_latitude1'
'ppl$epic_longitude1'
set ypos 'ypost' + .3
%label/nouser 0,'ypos',-1,0.,.16,'ppl$epic_cast1'
'ppl$epic_date1'
%clsplt

Appendix B Sec8 PLOT5, PPLUS DIFFERENCES

PPLUS is a greatly enhanced replacement to PLOT5. Most PLOT5 syntax and commands are
identical to PPLUS usage. However, there are the following differences and incompatabilities.

 RDCOM command has been replaced by the @ command.

 The LEV command replaces the LEVEL and CLINE commands.

In format statements and labels single quotes (') must be replaced by two single quotes (''). The same
applies to double quotes ("). See the chapter on labels.

 The LIMITS command is enhanced.

IF / ELSE / ENDIF and WHILE / ENDW logic are available in command files. The INC and DEC
 commands are available to increment and decrement symbols.

The TXLINT, TXLABP, TXLSZE, TXNMTC and TXTYPE commands should be used instead of
using the corresponding arguments in the TAXIS command.

The TIME command should be used instead of the TMIN, TMAX and TSTART commands.

NOTE : The following commands are not supported in this and future versions of PPLUS:

 TMIN, TMAX and TSTART

 LEVEL and CLINE

 RWDSEQ, READSEQ and SKPSEQ

 TAXIS will not support the obsolete arguments.

Appendix B Sec9 COMMAND DESCRIPTION

Appendix B Sec9.1 @file_name/qualifier arg1 arg2 arg3 ...

 Reads commands from the file file_name until an EOF, blank line, a RETURN command is executed
or the file ends, then reverts to the previous command level for input. Default device is SY:.
 Default extension is '.PPC'. The current command file name is placed in global symbol

PPL$COMMAND_FILE.

PPLUS can be started with a command file specified by typing $PPL file_name, where file_name is
the command file name. PPLUS will produce no screen output if called from a BATCH file. PPLUS
will terminate and not pass control back to the SYS$INPUT file.

The arguments may be any legal string. The arguments arg1,arg2,etc are SET to the local symbols P1,
P2, etc. For example:

 @command_file your_file "A label" "PLTYPE 2"

 The local symbols will be:

 P1 = your_file

 P2 = A label

 P3 = PLTYPE 2

These symbols can then be substituted into the command file.

 Qualifiers are (default in parenthesis):

 /[NO]ECHO Controls echoing to the file echo.dat during execution. (NOECHO)

 /[NO]DEBUG Sets DEBUG mode during execution. In debug mode the commands are written to the
echo file after symbol substitution has occurred. (NODEBUG)

 /[NO]QUIET Turns off messages to the terminal. (NOQUIET)

 /[NO]LOG Echos commands to terminal. (NOLOG)

 /[NO]LATCH Causes the current qualifiers to be the new default for all command levels.
(NOLATCH)

Appendix B Sec9.2 AUTO,ON/OFF

Turns on and off the automatic copying of plots while at a TEK terminal. default=OFF

Appendix B Sec9.3 AUTOLAB,ON/OFF

ON (default for BIBO and EPIC data) to get graph labels from data file headers. OFF (default for
 other data formats) for manual entry of graph labels. default=OFF

Appendix B Sec9.4 AXATIC,ATICX,ATICY

Sets the number of large tics in auto mode for X and Y axes. default=5

Appendix B Sec9.5 AXLABP,LABX,LABY

Sets the numeric and character label position for X and Y axes. -1=bottom/left of plot, 0=no label,
+1=top/right of plot. default=-1

Appendix B Sec9.6 AXLEN,XLEN,YLEN

Sets the X and Y axes length in inches. XLEN is also used as the length in inches of the time
 axis. default=5.5,4.0 The values of xlen and ylen are placed in global symbols PPL$XLEN and
PPL$YLEN.

Appendix B Sec9.7 AXLINT,LINTX,LINTY

 Sets the label interval for X and Y axes. Labels are only drawn for large tics. Default=2, i.e. every
other large tic.

Appendix B Sec9.8 AXLSZE,HGTX,HGTY

 Sets the label height for X and Y axes in inches. default=0.10 If HGTX or HGTY is negative the
numeric axis labels are multiplied by -1 before plotting.

Appendix B Sec9.9 AXNMTC,NMTCX,NMTCY

 Sets the number of small tics between large tics for X and Y axes. default=0

Appendix B Sec9.10 AXNSIG,NSIGX,NSIGY

Sets the number of significant digits in labels for auto labelling. default=2

Appendix B Sec9.11 AXSET,TOP,BOT,LEFT,RIGHT

Sets the flags controlling the plotting of the four axes. If =1 axis is ON, =0 axis is OFF. The default
for all axes is ON.

Appendix B Sec9.12 AXTYPE,TYPEX,TYPEY

Sets the axis type for X and Y axes. 1 - normal, 2 - log, 3 - inv-log. Type 3 axis draws the top/right
axis inverse and the bottom/left normal. default=1

Appendix B Sec9.13 BAUD,IB

Sets baud rate. Null entry not allowed.

B= Baud rate default=110

Appendix B Sec9.14 BOX,ON/OFF

Turns on and off the box that is drawn around the entire plotting region. default is ON.

Appendix B Sec9.15 C

Comment. This command can be used to comment your @ files. No action is done when this
command is processed. The C must be followed by at least one blank space.

Appendix B Sec9.16 CLSPLT

Closes the metacode file. Not to be confused with %CLSPLT, which is documented in the
 Advanced Commands Chapter.

Appendix B Sec9.17 CONPRE,prefix

Sets a prefix string for the numeric contour labels of up to 10 characters. For example,
CONPRE,@P2@TR will give labels using pen 2 and triplex roman font. Default = spaces.

Appendix B Sec9.18 CONPST,postfix

As CONPRE but sets up to 10 characters following the contour numeric label. For example,
CONPST,cm/sec will give contour labels like "10 cm/sec". Default = spaces.

Appendix B Sec9.19

CONSET,HGT,NSIG,NARC,DASHLN,SPACLN,CAY,NRNG,DSLAB

Sets parameters for contouring and placing random data on a grid. Must be issued before the RD
command.

HGT = height of contour labels default=.08 inches

NSIG = no. of significant digits in contour labels. default=2

 NARC = number of line segments to use to connect contour points default=1

DASHLN = dash length of dashes mode default=.04 inches

SPACLN = space length of dashes mode default=.04 inches

CAY = is the interpolation scheme. If CAY=0.0, Laplacian interpolation is used. The resulting surface
tends to have rather sharp peaks and dips at the data points (like a tent with poles pushed up into it).
 There is no chance of spurious peaks appearing. As CAY is increased, Spline interpolation
predominates over the Laplacian, and the surface passes through the data points more smoothly. The
possibility of spurious peaks increases with CAY. CAY= infinity is pure Spline interpolation. An over
relaxation process in used to perform the interpolation. A value of CAY=5.0 (the default) often gives a
good surface.

NRNG = Any grid points farther than NRNG away from the nearest data point will be set to "undefined"
 (1.0E35). default=5

DSLAB= nominal distance between labels on a contour line. default = 5.0 inches

CONTOUR/qualifier,vcomp,label

Does a contour plot of data in buffer. Label will replace that in the current main label buffer.
 Label is optional. If either axis is log that index must be equally spaced in log-space (i.e.
 10**(xmin+dx)). Contour does not take the log of the coordinate. The contour lines will be plotted
 with the pen selected for line 1. The label cannot begin with a numeric character, i.e., 95W. You can
 plot a number by specifying a font, e.g., @SR100 meters.

Vcomp indicates which vector component to contour. Default is 1. Vcomp is to be used when a
vector field has been read in. See the VECSET and VECTOR commands.

Valid qualifiers are:

/[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.20 CROSS,ICODE

Turns on and off the drawing of a solid line through(0,0) on a plot. Optionally can draw vertical
 and horizontal lines. Draws line through (XOFF,YOFF) when either TRANSXY or LINE
 command is used to apply a transformation to the data.

 ICODE = 0 cross off
 = 1 draw through (0,0) (default)
 = 2 horizontal line through each YOFF
 = 3 vertical line through each XOFF
 = 4 horizontal and vertical through each XOFF, YOFF

Appendix B Sec9.21 DATPT,type,mark

Controls the drawing of marks on a contour plot along the x and/or y axis on a grid at the points where
the raw ungridded X,Y,Z triplets are located.

type = 0 no points drawn (default)

 = 1 points drawn along the x axis
 = 2 points drawn along the y axis
 = 3 points drawn at each raw input value

mark = 0 use the default mark (default)
 = other use the specified mark to denote the location.

The default mark is down arrow for x axis, left arrow for y axis, and pluses for type=3. (also see
MARKH)

Appendix B Sec9.22 DEBUG on/off

Turns on and off the debugging mode. In debug mode theinput lines are echoed to the ECHO.DAT
file after symbol substitution. Default = off.

Appendix B Sec9.23 DEC symbol

Decrements the value stored in symbol by one. If symbol does not exist it is created and given a
value of zero.

Appendix B Sec9.24 DELETE symbol

Deletes "symbol" from the symbol table.

Appendix B Sec9.25 DFLTFNT,font

Sets the default font used for all labelling. PPLUS initially uses Simplex Roman (SR) as the
default font. Fonts are still selectable using the font command @xx, where xx is the two letter font
code. NOTE: This command also replaces the string set by the CONPRE command with the
selected font. The default font is not saved with MULTPLT.

This command changes the environment and can only be changed back with another DFLTFNT
command or using the @CL command.

font = the new default font (no default)

Appendix B Sec9.26 DIR,arg

Prints a listing of files with names or extensions that match "arg".

Appendix B Sec9.27 ECHO,on/off

Turns on/off echoing of PPLUS commands in the echo file ECHO. Default is ON. ECHO is a logical
that can be defined prior to entering PPLUS (e.g., DEFINE ECHO echo_file.echo). Default is for
echoing to go into the file ECHO.DAT.

Appendix B Sec9.28 ENGLISH

Sets the internal conversion factors in COMPLOT to inches. This is the default condition. (see the
METRIC command)

Appendix B Sec9.29 ENTER

Allows the input of X,Y pairs from the terminal. PPLUS prompts the user with 'enter>'. Type END to
stop.

Appendix B Sec9.30 EVAR/qualifier,x-var,y-var

Specifies which EPIC variables are to be plotted as x and y when FORMAT,EPIC command has
 been given. The EPIC/pointer file is named with the RD command, and each call to RD results in
 reading another EPIC data file as indicated by the EPIC/pointer file. PPLUS can extract axis labels and
 a plot title from the data file headers. Use FORMAT/CTD,EPIC to tell PPLUS that EPIC CTD data is
 being read. Use FORMAT,EPIC to tell PPLUS that EPIC time series data is being read. See
FORMAT command description for all the EPIC defaults.

x-var = Variable to be plotted as x
y-var = Variable to be plotted as y

EVAR ? displays a list of variables possible for x-var and y-var.

Examples of variables are TIM (time), U (zonal velocity), V (meridional velocity), etc. If you want to
plot x=time and y=zonal velocity, the command would be EVAR,TIM,U. If the variable you want to

 plot is not in this list, you can specify the column number of the variable in the EPIC data file. For
example, EPIC current meter data files generally have variables
 DATE,TIME,U,V,SPEED,DIRECTION. To plot x=time and y=speed, the command would be
EVAR,TIM,5. If the x variable is specified by column number, the EVAR argument list must be
 enclosed in double quotes, (e.g., EVAR,"3,4" will plot the variable in column 3 as x and the variable in
column 4 as y).

EVAR (without arguments) will yield a plot with x=date/time and y=the first variable following
date/time on the data file for time series data. For CTD data, EVAR (without arguments) will yield a
plot with x=variable in column 2 and y=variable in column 1 (usually pressure).

Valid Qualifiers are:

 /[NO]OFFSET For time series data. Controls whether PPLUS offsets the time word so that data points
are plotted in the center of each time interval. The default is OFFSET, which is appropriate for most
EPIC time series. (EPIC time words represent the start of the time interval in most cases, such as
average data.) Use /NOOFFSET to force PPLUS to plot data points at the start of each time interval
(e.g., this would be appropriate for subsampled data). Default is OFFSET.

 /[NO]TIME For time series data. Controls whether PPLUS reads the time word from the time series
data file. The default is /NOTIME, which means that the data is evenly spaced in time, making it
unnecessary to read the time words. Use /TIME to make PPLUS read the time word for data which is
unevenly spaced in time. Default is /NOTIME (unless dt is negative, in which case the default is
/TIME).

 /[NO]NEXT /NEXT indicates that the next variable is to be read from the same data file. When
/NEXT is used, no new data file name will be read from the EPIC file. The variables indicated by the
EVAR command will be read from the last data file. This option permits overplotting several variables
from the same data file, and can be used with the commands described in the ADVANCED
COMMANDS chapter to produce a plot with multiple axes. When /NEXT is used, both x and y
variables must be specified with the EVAR command. Default is /NONEXT.

The above qualifiers will also work with the VARS command when EPIC data is being read.

EXIT Causes all output buffers to be flushed and exits the program.

FORMAT/qualifier,frmt

Allows the input of a user supplied format for formatted sequential data files. Null entry is not
allowed. The current format is in global symbol PPL$FORMAT.

frmt = a format default=(3F10.2)

FREE for free form

DSF for DSF files

BIBO for DSF files without a PPLUS header

EPIC for EPIC time series data

UNF for UNFORMATTED files.

Valid qualifier (for EPIC data only) is:

 /[NO]CTD Controls whether EPIC data is read as time series data or as CTD data. If the data is EPIC
CTD data, then the /CTD switch must be used. Default is /NOCTD.

Appendix B Sec9.31 GET,file_name

Restores options to those in effect at the time SAVE,file_name was called. file_name must be
specified.

Appendix B Sec9.32 GRID[,LINEAR]

If the argument LINEAR is omitted (default), normal gridding is used. Otherwise, if LINEAR is
 included, gridding is done by linear interpolation with the following restrictions on the data:

 1. Data must be on a grid. The grid may have irregular spacing.

 2. There cannot be gaps in the middle of the grid. Every grid point in the middle of the grid must be
specified.

 3. The grid may have ragged edges.

Must be issued before the RD command. Note that if the grid is coarser than the data, it is possible that
some of the data will not be used in the gridding process. It is best to make the grid as fine as or
finer than the data rather than coarser.

Appendix B Sec9.33 HELP,arg

Give access to the VMS help files on topic "arg".

Appendix B Sec9.34 HLABS,n,height

Sets the height in inches of the nth moveable label. The height is reset to the default (specified by the
LABSET command) by omitting the height value or clearing the labels with a LABS command. (also
see LABS, RLABS, LLABS, LABSET)

Appendix B Sec9.35 HLP,arg

Gives help on the PPLUS topic "arg".

Appendix B Sec9.36 F expression THEN

The first element of a BLOCK IF statement; the other two elements are ELSE and ENDIF. ELSE
and ENDIF are not valid in any other context. expression = argument operator argument

 argument = symbol name, number or a string enclosed by quotes

 operator = .EQ., .NE., .LT., .GT., .LE. or .GE.

The symbol name can be undefined and its value is then "" (i.e., null string).

Appendix B Sec9.37 INC sym

Increments the value stored in the symbol sym by one. If sym does not exist it is created and given a
value of one.

Appendix B Sec9.38 LABS/qualifier,n,X,Y,JST,label

Defines the nth movable label for all plots. When plotting is done, the cross hairs will come on if no
X and Y position has been specified. Typing a C will center the label at the cross hairs or typing a
R will position the label to the right of the cross hairs. By typing L or F then repositioning the cross
hairs and then typing another character a line will be drawn from the first point to the second and the
label will be drawn at the second point (if F was specified an arrow will be drawn). Any character other
than L, F, R or C will cause the the label to be drawn at the cross hairs. Null entries are not allowed

 for n or label. A comment will be inserted into the ECHO.DAT file giving the coordinates when
cross hairs are used. If n is omitted LABS is reset and all moveable labels are cleared. (also see
LABSET, HLABS, RLABS, LLABS)

n = label number (up to 25 allowed)

X = X position of label in user units (optional)

Y = Y position of label in user units (must exist if X is present)

JST = justification of label. -1 left (default), 0 center, +1 right

label = any SYMBEL compatible string

/[NO]USER determines units of x and y positions. Default is /USER. If /NOUSER units are inches
from the ORIGIN. (see the ORIGIN command)

NOTE: Units specified by the /user qualifier are also used in the LLABS command. If your terminal
does not have cross hairs, you must specify X and Y.

Appendix B Sec9.39 LABSET,HLAB1,HXLAB,HYLAB,HLABS

Sets character heights for labels. (also see LABS, RLABS, LLABS)

HLAB1 = main label default=.16 inches
HXLAB = x - label default=.12 inches
HYLAB = y - label default=.12 inches
HLABS = movable labels default=.12 inches

Appendix B Sec9.40 LEV,arg,arg,arg ...

Sets the contour levels, the contour line type, the contour line label characteristics and lets the user
edit (insert/delete) levels. Any duplicate levels will be deleted, however, each LEV command edits
the existing levels and unless requested the levels are not cleared. Maximum number of levels is 500.

 arg = () clear levels, number of automatic levels to 10.

 arg = (min,max,inc,idig) specifies the contour levels and abel type

 min = starting value for levels creation
 max = ending value for levels creation (if omitted
 only the starting level will be created)

 inc = increment used to create levels. (if omitted
 only the starting and ending levels will be
 created, if 0 the starting and ending levels
 are deleted)

 idig = 0 through 9 Number of digits after the
 decimal point in the label
 = -1 contour label plotted as an integer
 = -3 no contour label will be drawn

 arg = type(min,max,inc,ipen) sets the contour lines specified to "type"

 type = DASH sets the line type to dash
 = DARK sets the line type to dark (heavy)
 = DEL deletes the indicated levels.
 = LINE sets the line type to line (normal)
 = PEN sets the pen used for a contour line to
 "ipen". ipen=0 to use default pen.

For example, "LEV,(),(9,20,1,-1),DASH(8,20,2)" will clear the previous levels and create contours
at every integral value from 9 to 20 with the labels drawn as integers, all even valued contours
 from 8 to 20 will be drawn with dashed lines.

Appendix B Sec9.41 LIMITS,value,comparison,flag

This command sets the testing value and type of test for bad data points. X, y and z are checked and
the point will not be plotted if the test is true.

value = test value for the test

comparison = XLE test for x .le. value, default off, 0.0
 XEQ test for x .eq. value, default off, 0.0
 XGE test for x .ge. value, default on, 1.E35
 YLE test for y .le. value, default off, 0.0
 YEQ test for y .eq. value, default off, 0.0
 YGE test for y .ge. value, default on, 1.E35
 ZLE test for z .le. value, default off, 0.0
 ZEQ test for z .eq. value, default off, 0.0
 ZGE test for z .ge. value, default on, 1.E35

flag = OFF the test is disabled, otherwise the test is enabled.

If your are reading data to be contoured with ZGRID, the limits are checked only after interpolation. If
you arE using GRID,LINEAR, limits are checked before and after interpolation.

Appendix B Sec9.42 LINE,n,MARK,TYPE,XOFF,YOFF,DN1,UP1,DN2,UP2

Sets the characteristics for each of the 50 possible X-Y plot lines.

n = line number

MARK = data mark (see list at end of manual, e.g. 1 for x, 3 for +)

TYPE = type of line
 0 - line connecting points and no mark at each point
 1 - line connecting points and mark at each data point
 2 - mark end points only
 3 - only mark (no line)
 4 - dashes
 5 - dashes with mark at end points

XOFF = X offset default=0.0

YOFF = Y offset default=0.0

DN,UP = dash characteristics in inches.

Default TYPE=0 for n=1, TYPE=4 otherwise.

Appendix B Sec9.43 LINFIT,n,XIMIN,XIMAX,XOMIN,XOMAX

A linear least squares fit is performed on the data in line n and the resulting fitting line is placed in the
next available line buffer.

Example:

RD,data.fil LINFIT,1

will place the fitting line from the regression of line 1 into buffer 2.

n = line number (no default)

XIMIN = min x value for the regression domain

XIMAX = max x value for the regression domain

XOMIN = min x value for the fitting line (default=XIMIN)

XOMAX = max x value for the fitting line (default=XOMIN)

XIMIN and XIMAX default to the minimum and the maximum of the data. XOMIN and XOMAX
default to XIMIN and XIMAX, respectively. An alternate form for the command may be used when
TAXIS is ON and TSTART has been set. It is:

LINFIT,n,TIMIN,TIMAX,TOMIN,TOMAX

Where the arguments are the beginning and ending times in Woods Hole format
 WYYMMDDHHMM, i.e., W8101121800 is 12-JAN-1981 18:00. The arguments have the same
meanings and defaults as above.

The following global symbols are defined by LINFIT:

PPL$LF_R2 = regression coefficient squared

PPL$LF_A = constant for fit (y = a + b*x)

PPL$LF_A_STDEV = standard error of A

PPL$LF_B = constant for fit

PPL$LF_B_STDEV = standard error of B

PPL$LF_VAR = total variance

PPL$LF_RES_VAR = residual variance after fit

Appendix B Sec9.44 LIST,IMIN,IMAX,JMIN,JMAX,VCOMP,arg

List on the terminal the appropriate information. Null entry is not allowed if arg is not DATA. IMIN,
IMAX, JMIN, JMAX only valid if arg=DATA. Defaults are to print the total plot buffer.

IMIN= min I for CONTOUR , start pt for X-Y

IMAX= max I for CONTOUR , stop pt for X-Y

JMIN= min J for CONTOUR , start line for X-Y

JMAX= max J for CONTOUR , stop line for X-Y

VCOMP= vector component to be listed (VECTOR command)

arg= LEVELS contour levels and weights
 CONSET contour information
 DATA data currently in buffer
 DATPT contour data location before gridding
 LABELS prints the labels at the terminal
 LABSET LABSET parameters
 LINES current LINE and PEN values
 LIMITS the current values set/reset by the limits command
 PLOT gives plot information and plot file name
 READ sequential read information
 STATS min and max plus sizes of last read
 TAXIS T-axis attributes
 TICS Tic sizes and options
 TRANSXY X and Y transform values
 VECTOR Vector plotting attributes (VECTOR command)
 XAXIS X-axis attributes
 YAXIS Y-axis attributes

Appendix B Sec9.45 LISTSYM

Lists the symbols currently defined.

Appendix B Sec9.46 LLABS,n,X,Y,TYPE

Defines the starting position in user units for a line associated with the moveable labels. The end of the
line is determined from the LABS command. This command has no effect if the label is to be
 positioned with the cross-hairs. If the command is issued without coordinates the TYPE is set to
none. Fancy has an arrow head at the starting position. (also see LABS, RLABS, HLABS, LABSET)

n = label number less than 11

X = X position of line in user units

Y = Y position of line in user units

TYPE = line type. 0 no line, 1 normal line, 2 fancy line

NOTE: Units of x and y positions are determined by the /USER qualifier in the LABS command.

Appendix B Sec9.47 MARKH,n,SIZE

Sets the mark size used for plotting line number n. The mark size for line 1 is used for the marks in
the DATPT command (contouring).

n = line number (no default)

SIZE = size of mark in inches (default= 0.08)

Appendix B Sec9.48 METRIC

Sets the internal conversion factors in COMPLOT to millimeters. Default condition is inches.

MULTPLT,NX,NY

This command allows the user to plot several plots together. The individual plots are arranged in
rows and columns. The X axis length of each plot in the same column and the Y axis length of each
plot in the same row are identical. The axis lengths are specified in rows and columns. The spacings
between the rows and columns are also user controlled. If the spacing is zero the plots are placed
 together without axis labels if appropriate. There are prompts for all additional information needed.

NX = number of columns
NY = number of rows

The prompts will be:

ENTER XLEN FOR COLS 1,2,...,NX
multplt>
ENTER YLEN FOR ROWS 1,2,...,NY
multplt>
ENTER PLOT SPACINGS
LEFT BNDRY TO COL1, COL1 TO COL2,ETC...
multplt>
ROW1 TO ROW2,...,ROW NY TO BOTTOM
multplt>

Axis length and ORIGIN are reset after plotting is finished.

Appendix B Sec9.49 NLINES

Resets the the input buffer so that the next data line read will be line 1. The input buffer is normally
reset when a plot is made.

Appendix B Sec9.50 ORIGIN,XORG,YORG

Sets the distance the lower left hand corner of the plotting area is from the lower left corner of the box.
 The values of xorg and yorg are placed in the global symbols PPL$XORG and PPL$YORG.

XORG = x-distance (in) default=1.4
YORG = y-distance (in) default=1.2

Appendix B Sec9.51 PEN,n,ipen

Sets the pen to be used for line n. ipen should be in the range 1-6, subject to the limitations of the
plotting device. On the VERSATEC, pen 2 is thicker than pen 1, pen 3 is thicker than pen 4, etc. The
pen selected for line 1 will be used to draw the contour lines. (also see LEV)

n = line number. If n=0 sets the pen used to plot the axes and labels.
ipen = pen number. default=1

Appendix B Sec9.52 PLOT/qualifiers,label

Does an X-Y plot of data in the plot buffer (all lines). The plot label "label" is optional. The plot
label can be blanked with the TITLE command. If either x-axis or y-axis is log PLOT will take the
 logarithm of the appropriate coordinate as it is plotted. This will not affect the data buffer.

Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.53 PLOTV/qualifiers,VANG,INC,label

Does a stick plot for U,V pairs stored in X,Y, respectively. May be used with or without TAXIS
option ON.

VANG = rotation angle of vectors default=0.0
INC = plots every inc vector (subsamples)
label = plot label

Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.54 PLOTUV/qualifiers,VANG,INC,label

Similar to PLOTV except U and V are in alternate pairs, where X1= count, Y1= U component, X2=
 count, Y2= V component, etc. NLINES must be set to an even number and first series read will be U
second V etc.

Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.55 PLTNME,fname

Specifies the file name to be used for plots. File name is available in the global symbol
PPL$PLTNME. fname = the file name (default = ZETA.PLT)

Appendix B Sec9.56 PLTYPE,ICODE

Sets plotting medium. Null entry is not allowed. The binary file is converted into device specific code
using a post processor. The plot file name can be specified using the PLTNME command.

 ICODE = device code for plotting
 -2 = HP and TEK
 -1 = HP
 0 = Binary file
 1 = TEK
 2 = TEK and Binary file
 3 = GKS (valid on MicroVAX only)
 4 = GKS and Binary file (valid on MicroVAX only)

 default=1

Appendix B Sec9.57 RD/qualifier,NX,NY,TYPE,n,file_name

Read formatted or unformatted data from a sequential file according to FORMAT and VARS or
EVARS. The input file name is available in the global symbol PPL$INPUT_FILE.

NX and NY define the grid on which data will be plotted. If X,Y,Z triplets are being read the grid
can be coarser or finer than the input data. Thus, when reading triplets NX, NY of 50, 21 indicates
 the grid used for contouring will be 50 x 21 and not that the input data is on this grid. When the input
data are values of Z only the input grid and the plotting grid must be identical. Maximum number of
points for a single read is 100,000 pairs, 200,000 grid points or 50,000 triplets. Default number of
 points read is the remaining buffer space. File_name may be omitted if previously defined. Null
 entries are not allowed.

NX = no. of columns on the plotting grid for contouring or
 no. of points to read if not contouring. See NY for explanation.

NY = no. of rows if data is on a grid for contouring. Omitted otherwise.

The meaning of NX and NY change depending on whether you're reading data for contouring or not. If
you're reading contour data NX is the number of columns and NY is the number of rows.

If the data is not contour data NX is the number of points to be read and NY is not required. The default
for NX is the space remaining in the buffer. Reading will stop automatically at the EOF without any
error.

TYPE = method by which grid data is to be read (contour data only)
 0 by rows (1st subscript varies fastest)
 1 by columns (2nd subscript varies fastest)
N = number of data sets to be read (on same file).
file_name = file name. Default device is SY:.

If the file name is explicitly given the file will be read after rewinding the file. If the file name is not
given no rewind takes place.

If the data is EPIC, the file name given with the RD command is the name of the EPIC/pointer file for the
data file. Otherwise, the file name is the name of the data file itself

Valid qualifier (use only with VECTOR, VECSET, VECKEY commands):

/[NO]VECTOR /VECTOR reads the second component grid using the old xmin,xmax,ymin,ymax.
 This is done after the first vector component has been read in the usual fashion. See the VECTOR
command Default is /NOVECTOR.

If you are reading triplets PPLUS prompts for total number of points to be read in with 'rd>'. If you
are readingtriplets or grid data PPLUS will also prompt for xmin,xmax,ymin,ymax. (limits)

Appendix B Sec9.58 RESET

Uses the logical PPL$RESET as the input file to the GET command.

Appendix B Sec9.59 RETURN

Return from current command level to the previous command level. If executed at the top level
PPLUS will exit.

Appendix B Sec9.60 RLABS,n,ANG

Specifies the angle to rotate the moveable labels. (The labels defined by the LABS command.)

n = number of the label (no default)
ANG = angle in degrees. Default = 0.0

Appendix B Sec9.61 ROTATE,ON/OFF

Rotates the plot 90 degrees on the screen and plotter.

Default = OFF

Appendix B Sec9.62 RWD,file_name

Rewinds the current data file. File_name may be omitted if previously defined. Files are also
rewound by explicitly including the file name in the SKP and RD commands. Rewinds the EPIC
pointer file. The input file name is available in the global symbol PPL$INPUT_FILE.

If the data is EPIC, the file name given with the RWD command is the name of the EPIC/pointer file for
time series data. Otherwise, the file name is the name of the data file itself

Appendix B Sec9.63 SAVE,file_name

Saves the options currently in effect on file file_name in a binary format. File_name must be specified.

Appendix B Sec9.64 SET sym arg

Creates/modifies the symbol sym and sets it to arg. The argument arg can be either a legal character
string, a simple arithmetic expression, or a special function. A simple arithmetic expression is of
the form num1 op num2, where op is +, -, * or / (addition, subtraction, multiplication or
 division) and num1 and num2 are numbers. The numeric values must be separated from the operator op
by spaces. The string will be used exactly as it appears if enclosed by double quotes ("). For example:

SET XPOS 4.4 + 2 results in XPOS = 6.200E00
SET A_LABEL "4.4 + 2" results in A_LABEL = 4.4 + 2

The special functions manipulate and reformat character strings. They are:

 $EDIT(symbol,argument)
 $EXTRACT(start,length,symbol)
 $INTEGER(symbol)
 $LENGTH(symbol)
 $LOCATE(substring,symbol)
 $ELEMENT(position,delimiter,symbol)

The general format is SET sym $function(arg1, arg2,...). These functions are described in the
 SPECIAL FUNCTIONS section. (p. 427)

Appendix B Sec9.65 SHOW symbol

Prints the current value of "symbol".

Appendix B Sec9.66 SIZE,width,height

Sets total plotting size in inches of the plotting region. Null entries are not allowed. The width and
height should be about 2 and 1.5 inches greater than the respective axis lengths. The displacement
specified by ORIGIN must be considered when values for SIZE and AXLEN are being chosen. The
 maximum allowed size for Versatec plots (to keep the plot on a single page) is 8 by 10.5. The values
 of width and height are placed in the global symbols PPL$WIDTH and PPL$HEIGHT.

 width = plotting area total width (default = 7.5)
height = plotting area total height (default = 5.625)

Appendix B Sec9.67 SKP,n,file_name

Skip n sequential or unformatted records. File_name may be omitted if previously defined. If the file
name is explicitly given the records will be skipped after rewinding the file. If the file name is not
given no rewind takes place. The input file name is available in the global symbol
PPL$INPUT_FILE.

If the data is EPIC, the file name given with the SKP command is the name of the EPIC/pointer file for
time series data. Otherwise, the file name is the name of the data file itself.

Appendix B Sec9.68 SMOOTH,n

Does n laplacian smoothings on contour type data. Null entry is not allowed.

Appendix B Sec9.69 SPAWN

Creates a sub-process and passes control to this process. When finished with the spawned process

type LOGOUT to return to PPLUS.

Appendix B Sec9.70 TAXIS/qualifier,DT,arg

Sets the time axis characteristics. The axis length is specified with AXLEN for this style axis. When
TAXIS is turned on and BIBO or EPIC formatted data is read, the time series are automatically adjusted
properly relative to TMIN. NOTE: DT and TSTART (set with the TIME command) are needed only
when BIBO or EPIC data is not being used.

DT = sampling rate in minutes (default=1440 ,ie, daily)
arg = ON/OFF turns TAXIS option on and off (default=OFF)

/[NO]YAXIS if yaxis draw a vertical time axis in place of the yaxis. (NOYAXIS)

Appendix B Sec9.71 TEKNME[,fname]

Stores the Tektronix plot in file fname if specified. Terminal must have NOWRAP to dump the plot
back to the screen with the TYPE command. The current Tektronix plot file name is available in
global symbol PPL$TEKNME.

Appendix B Sec9.72 TICS,SMX,LGX,SMY,LGY,IX,IY

Sets the sizes in inches of the small and large tics on the X and Y axis. The tic style may also be set for
both axes.

SMX = small X axis tic size default=0.125
LGX = large X axis tic size default=0.25
SMY = small Y axis tic size default=0.125
LGY = large Y axis tic size default=0.25
IX = 1 X tics on the inside
 0 X tics on both sides
 -1 X tics on the outside (default)
IY = 1 Y tics on the inside
 0 Y tics on both sides
 -1 Y tics on the outside (default)

Appendix B Sec9.73 TIME,TMIN,TMAX,TSTART

Specifies time axis limits and starting time of time series data. See TAXIS command for restrictions.
 (Default is auto-scaling for BIBO and EPIC formatted data)

Note: If you read time as a sequence number andspecify DT (set with the TAXIS command) and
TSTART, then the TSTART time/date must correspond to a sequence number of 1.

TMIN and DT (see TAXIS command) must be specified before TSTART. TSTART must be re-
entered whenever DT is changed.

TMIN = Start date/time of time axis (WHOI format = Wyymmddhhmm)
TMAX = End date/time of time axis
TSTART = Start time of time series data (optional)

Appendix B Sec9.74 TITLE,HLAB,label

Sets the main plot title to "label" without generating a plot. If "label" is omitted the main plot title is
cleared. Optionally the size of the title can also be specified.

HLAB = the height of the title in inches. (default = .16 inches)

Appendix B Sec9.75 TKTYPE,TYPE

Sets the type of TEK terminal. Null entry is not allowed. Valid values are: 4010, 4014, 4107,
4115, 4051, 4052 and 4662.

TYPE = model no. of TEK terminal default=4010

Appendix B Sec9.76 TRANSXY,n,XFACT,XOFF,YFACT,YOFF

Lets you define a linear transformation for the X and Y variables in each line, i.e., XT(i)=
XFACT*X(i) + XOFF. TRANSXY does not affect the data. The translation is only applied as the data
is plotted.

n = line number (no default)
XFACT = multiplicative factor for X (default=1.0)
XOFF = offset for X (default=0.0)
YFACT = multiplicative factor for Y (default=1.0)
YOFF = offset for Y (default=0.0)

The transformation factors are available in the global symbols PPL$XFACT(n), PPL$XOFF(n),
 PPL$YFACT(n) and PPL$YOFF(n), where "n" is the line number. Initially only the first 10 lines
will have these symbols defined.

If the value being scaled is time and TAXIS is on, XOFF or YOFF is in units of DT. Unless DT is
changed with the TAXIS command, it will have the default value of 1 day.

Appendix B Sec9.77 TXLABP,n

Specifies time axis label position (-1 for below plot, 0 for no label, or +1 for above plot).

Appendix B Sec9.78 TXLINT,low_int,hi_int

Specifies which time axis tics will be labeled.

Low_int = labeling interval for lowest level of tics (e.g. mon on mon/yr axis)
Hi_int = labeling interval for highest level of tics (e.g. yr on mon/yr axis)

Appendix B Sec9.79 TXLSZE,ht

Specifies height of time axis labels (inches).

Appendix B Sec9.80 TXNMTC,n

Specifies number of small tics between large tics on time axis. If NMTCT is -1 the major divisions
are denoted by large tics and the minor divisions by small tics, otherwise they are denoted by
thick tics and large tics, respectively.

Appendix B Sec9.81 TXTYPE,type,style

Specifies type and style of time series axis.

type = DAYS
 style = HR (hour,day on 2 lines) (default)
 = HRDAY (on 1 line)

 = MON
 style = DAY (day,mon on 2 lines) (default)
 = DAYMON (day,mon on 1 line)
 = YR (default)
 style = MON1 (1-char month)
 = MON3 (3-char month) (default)
 = MONYR (month,yr on 1 line)

Appendix B Sec9.82 VARS,NGRP,A1,A2,A3,...,Ai

Defines the location of variables within a record of a sequential data file. If only a single variable
 is specified and it is either X or Y the other is automatically filled with the data point number. If only Z
(gridded data) is given the program expects data to be grid points in one of two formats, by rows or
 by columns. If X, Y, and Z (triplets) are given the program uses ZGRID to put the data on a evenly
spaced grid. See the chapters Getting Started and Data Formats for more information on VARS.

NGRP = no. of groups per record
Aj = 1,2, or 3 The position of Aj in VARS command indicates which variable
 is to be read as an x, y or z.
 1 = X variable
 2 = Y variable
 3 = Z variable
i = NVAR no. of variables per group. default=VARS,1,1,2
 (i.e. one group per record, first variable is X, second is Y). If left blank
 indicates a number not to be read, but a variable is present and expected by the FORMAT.

Appendix B Sec9.83 VECKEY/qualifier,x,y,ipos,format

VECKEY sets where the scaling key for the vectors is plotted. See VECTOR and VECSET
commands.

 x = x position of vector key
 y = y position of vector key (default is no key at all)
 ipos = relative position of key (not implemented)
 format = format to draw the numeric part of the key default = (1pg10.3)

 Valid qualifiers are:

 /[NO]USER determines units of x and y positions. Default is /USER. If /NOUSER units are inches
from the ORIGIN. (see the ORIGIN command)

Appendix B Sec9.84 VECSET,length,scale

VECSET sets the scaling for the vectors plotted. See the VECTOR and VECKEY commands.

 length = length of standard vector in inches. this is also the length of the scale vector. Default is 0.5.

 scale = length of standard vector in user units. This is also the length of the scale vector is user units.
 Default is the twice the mean length of the vectors.

Appendix B Sec9.85 VECTOR/qual,skipx,skipy,label

VECTOR draws a field of vectors from two component grids. See the VECKEY and VECSET
commands.

 skipx = plot every skipx column (default is 1)
 skipy = plot every skipy row (default is 1)
 label = title of plot

 Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.86 VELVCT,rlenfact,inc

Does a vector plot of u,v pairs located at x,y locations. This plot is done on a two dimensional
field (compared to PLOTV and PLOTUV which are one dimensional). To use VELVCT the data
must be stored as two lines. Line 1 containing u,v data pairs, and line 2 containing the
corresponding x,y location pairs. The lines are loaded with data in the ordinary manner. Default length
scaling is set to the minimum inches/user_unit along the x and y axis.

 rlenfact = scaling factor for vector length (default = 1.0)
 > 0 scale = rlenfact * inches/user_unit on x-axis
 < 0 scale = rlenfact * inches/user_unit on y-axis
 inc = plots every inc vectors (subsamples)

Example:

xaxis,0,4,1
yaxis,1,8,1
nlines,2
enter
2.2,3.3
5.0,6.0
1.3,2.0
3.0,0.0
0.5,7.3
1.3,4.4
1.1,4.2
end
enter
1,2
3,3
2,2
3,5
2,6
2,7
3,2
end
velvct,-.3,2

reads 7 x,y and u,v pairs storing them as lines then plots every other vector scaled .3 * inches/user_unit
on y-axis.

Appendix B Sec9.87

VIEW/qualifiers,ZSCALE,IC,ZMIN,ZMAX,VCOMP,label

Does a 3 dimensional surface plot. Label is optional.

ZSCALE = scale of the z data default=(YMAX - YMIN)/
 (ZMAX - ZMIN)
IC = 0 set Xscal = Yscale, =1 no effect. default=0
ZMIN = set the base of the surface plot to ZMIN. default:
 use ZMIN from the data
ZMAX = set the top of the surface plot to ZMAX. default:
 use ZMAX from the data
VCOMP = Vector component to use for plotting (see the
 VECTOR command). Default is 1.

 Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command

level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Best results are normally obtained by using defaults. Using scales does not change the data buffer.

VPOINT,X,Y,Z

Sets the viewpoint coordinates for surface plotting. To create a surface plot use the VIEW
 command. The viewpoint coordinates are available in the global symbols PPL$VIEW_X,
 PPL$VIEW_Y and PPL$VIEW_Z. X, Y and Z form a right handed coordinate system with the Z axis
up and Y axis into the page.

X = x coordinate of viewpoint
Y = y coordinate of viewpoint
Z = z coordinate of viewpoint

Appendix B Sec9.88 WHILE expression THEN

The first element of a WHILE statement the other element is ENDW. ENDW is not valid in any
other context.

 expression = argument operator argument
 argument = symbol name, number or a string enclosed by quotes
 operator = .EQ., .NE., .LT., .GT., .LE. or .GE.

The symbol name can be undefined and its value is then "" (i.e., null string).

Appendix B Sec9.89 WINDOW,ON/OFF

Windows the data to within the axes. default=OFF

Appendix B Sec9.90 XAXIS,XLO,XHI,XTIC

Sets the x-axis characteristics. If TYPEX is not 1, then XLO and XHI must be the log of the minimum
and maximum (must be integral values). XAXIS without arguments resets the auto scaling. Auto
 scaling does consider LIMITS and does not consider WINDOW,ON.

XLO = axis minimum (beginning of axis)
XHI = axis maximum (end of axis)
XTIC = dx distance between large tics

Appendix B Sec9.91 XFOR,frmt

Sets the format for the x axis label.

frmt = 0 or (a format) default=0 (auto label)

To create an integer numeric label the format must begin as "(I" or "(i". A latitude or longitude axis
can be created by specifying ''LAT''), ''LON''), ''LONE'') or ''LONW'') in the format. Two single
quotes are required because PPLUS symbol substitution will occur with 1 single quote. The
 hemisphere designation will be inserted. Longitude must be continuous across the dateline with
 west positive for ''LON'' or ''LONW'', i.e., 135 is 135W and 190 is 170E. For ''LONE'' longitude is
 continuous across the dateline with east positive, i.e., 135 is 135E and 190 is 170W.

Appendix B Sec9.92 XLAB,label

Enters the x-axis label. Label is ignored if TAXIS is on.

Appendix B Sec9.93 YAXIS,YLO,YHI,YTIC

See XAXIS.

Appendix B Sec9.94 YFOR,frmt

See XFOR.

Appendix B Sec9.95 YLAB,label

Enters the y-axis label.

Appendix B Sec10 FONT TABLES

Following are the Character and Symbol fontsavailable with PPLUS. Choose the font by its 2-letter
code, e.g. PLOT/TITLE=@CITemperature for the title "Temperature" in complex itallic. See
"Embedded String Commands" (432) in this appendix for use of the PPLUS fonts.

Tables showing the character fonts are linked to the web page:

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_char_fonts.html

Tables showing the symbol fonts are linked to the web page:

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_symbol_fonts.html

The symbols used for PLOT/SYMBOL= are shown below. For example, PLOT/symbol=22 yields a *,
and PLOT/SYMBOL=35 yields a z.

file:///J|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/v55_for_pdf/images/show_88_syms.GIF
http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_char_fonts.html#_TN_Ref_viewaxes_b
http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_symbol_fonts.html #_TN_Ref_viewaxes_b

Appendix C: PLOTPLUS PLUS: Ferret Enhancements
to PLOTPLUS

 A User's Guide to the TMAP Modifications of the Plotplus Graphics Package

Jerry Davison

NOAA/PMEL/TMAP

April 1994

Note: this document also exists at
http://ferret.pmel.noaa.gov/Ferret/Documentation/PPLUS_Users_Guide/pplus_enhance_user_guide.html

It is included here with changes only to the formatting. Appendices 1 and 2 of the original document are
renumbered here as sections 3 and 4. Note that section 4, which describes generating postscript plots
with gksm2ps is duplicated in the main Ferret Users Guide in the section "Metafile Translation" (p.226)
.

Appendix C Sec1 PLOTPLUS HISTORY, EVOLUTION

Plotplus is a scientific graphics package with a long history. I have traced it only a small distance, and
what I know is sketchy. My present understanding is that a number of users at the Oregon State
University department of Oceanography contributed over a number of year to a graphics package with
both original and pre-existing algorithms and code; PLOT1, PLOT2, PLOT3 and PLOT4 successively
became the current standard. Don Denbo took a strong interest in improving the package; from his work
evolved PLOT5. He came to PMEL, improved PLOT5 further, and Plotplus was born. While here he
made modifications for the TMAP group to that code to support the Graphics Kernel System, GKS, an
international standard for programming computer graphics applications. This user's guide describes
 modifications I made to Plotplus to extend the use of GKS within it; this version will no doubt evolve
as well.

The guide addresses itself only to the TMAP modifications to Plotplus. The Plotplus manual describes
all other aspects of the current version as supported by its author and should be consulted for
information about using Plotplus.

The TMAP GKS enhancements of Plotplus include modification and addition of several PPL
commands, including:

ALINE,
CLSPLT,
COLOR,

http://ferret.pmel.noaa.gov/Ferret/Documentation/PPLUS_Users_Guide/pplus_enhance_user_guide.html

CONSET,
FILL,
LINE,
LIST,
PEN,
PLTNME,
PLTYPE,
SHADE,
SHAKEY,
SHASET.

This version of PPL+ is modified to be used with the public domain GKS library XGKS. X Windows is
the only supported device type. There is in addition a utility, gksm2ps, to generate monochrome and
color hard copy of PPL+ plots. `gksm2ps' was written by Larry Oolman at the University of Wyoming;
I modified it for use with PPL+. Please see the Ferret Users Guide for information on using gksm2ps.

Appendix C Sec2 ENHANCED COMMANDS DESCRIPTION

Appendix C Sec2.1 ALINE/qualifier line#, minx, miny, maxx, maxy, set

Draws the line associated with the specified line number between 2 points (see PEN for more on this).
 Two modes are available. In immediate mode the line is drawn when the command is given. Deferred
mode permits setting of several lines (with individual endpoints) to be drawn whenever the PLOT
command is given. Deferred mode is included so that examples of each linetype used in a plot can be
provided as part of a key. The ALINE command does not modify data in the plot buffer; lines drawn
can be considered as labels. The ALINE command given with no arguments resets all set lines to OFF.

 line# The line to be drawn will be of the type, thickness, and color associated with this line number.

 minx X-component of the first endpoint.

 miny Y-component of the first endpoint.

 maxx X-component of the second endpoint.

 maxy Y-component of the second endpoint.

 set is optional. If omitted, execution mode is immediate. If ON, sets deferred mode for the specified
line number. If OFF, drawing the line is canceled; specification of the endpoints may be omitted when
canceling ALINE for a line. Execute LIST ALINE to find which lines are set, and their coordinates.

 Valid qualifier:

 /[NO]USER determines whether user coordinates or inches will be used in locating the line. Default is
/user.

Appendix C Sec2.2 CLSPLT

Modified to be compatible with GKS metafile use. Closes the currently open plot file.

Appendix C Sec2.3 COLOR n, red, green, blue

Sets the color of a single color using the RGB color model. Specify with no arguments to reset colors 1
through 6 to their default values. These six colors are used as the line colors in line and contour plots.
 See "GKS line bundles" for more on line color and bundles.

 n color index

 red The intensity of red, with a value from 0 to 100%

 green The intensity of green

 blue The intensity of blue

In the present version of PPL+, colors of indices 0 and 1, corresponding to the plot window background
and foreground, are restricted to black (intensities all 0) or white (intensities all 100).

Appendix C Sec2.4 CONSET hgt, nsig, narc, dashln, spacln, cay, nrng,
dslab, spline_tension, draftsman

Two new parameters have been added, spline_tension and draftsman. Spline_tension controls a spline
fitting routine for contour lines and is used primarily in conjunction with the narc parameter to alter the
way contour lines are drawn. The new parameter draftsman enables the user to specify either
horizontally oriented contour labels (draftsman style) or the default, contour labels running along
contour lines.

 hgt height of contour labels (default=.08 inches)

 nsig no. of significant digits in contour label (default=2)

 narc number of line segments to use to connect contour points (default=1)

 dashln dash length of dashes mode (default=.04 inches)

 spacln space length of dashes mode (default=.04 inches)

 cay is the interpolation scheme. If CAY=0.0, Laplacian interpolation is used.

The resulting surface tends to have rather sharp peaks and dips at the data points (like a tent with poles
pushed up into it). There is no chance of spurious peaks appearing. As CAY is increased, Spline
interpolation predominates over the Laplacian, and the surface passes through the data points more
smoothly. The possibility of spurious peaks increases with CAY. CAY = infinity is pure Spline
interpolation. An over relaxation process in used to perform the interpolation. A value of CAY=5.0
(the default) often gives a good surface.

 nrng Any grid points farther than NRNG away from the nearest data point will be set to "undefined"
[1.0E35] (default=5)

 dslab nominal distance between labels on a contour line (default = 5.0 inches)

 spline_tension a real value that affects the fit of the contour line. sometimes it's called the tension
factor. This value indicates the curviness desired. If abs(spline_tension) is nearly zero (e.g. .01) the
resulting curve is approximately a cubic spline. If abs(spline_tension) is large (e. g. 10) the resulting
curve is nearly a polygonal line. If spline_tension equals zero, the resulting curve will be calculated by
the original algorithm in PPL. This will result in a cubic polynomial fit. This parameter is only applied
if narc is greater than 1. Otherwise, straight lines are drawn between data points and no interpolated
points are contoured. A typical value for spline_tension is 1, and the typical useful range of values is .01
to 10. The spline interpolation used in this calculation will result in erroneous plots for certain large
values of spline_tension (about 20 or greater). It is up to the user to choose an appropriate value of
spline_tension to avoid this error. No error checking is conducted in the interpolation routine for this
condition because the error depends highly on the data being interpolated. The default for
spline_tension is zero, so the standard contour line fit is used unless something else is input. NOTE:
While it may seem that this feature somewhat overlaps the feature documented in the parameter cay
above, this is not true. The parameter cay and the associated feature is only implemented if both the grid
and data are read in directly using the RD command. In that case, CONSET must be input before RD.
 On the other hand, when using the spline_tension feature described here, this is not needed as
interpolation is carried out at the time the contour lines are drawn.

 draftsman a real value that controls the label format. If draftsman is set to zero, the original label style
is used. This style writes the labels along contour lines at varied angles. If draftsman is set to anything
other than zero, all the labels will be oriented horizontally on the page (a.k.a. draftsman style). At this
time the magnitude of the non-zero value has no bearing on the plot. The default is zero.

Appendix C Sec2.5 FILL/qualifier

 FILL is a modification of the PPL AREA command. FILL generates a "smooth-bordered" area-filled
contour plot of a 2-d field. As with the SHADE command, the SHAKEY and SHASET commands can
be used to control the appearance of the plot. The /[NO]WAIT and /[NO]OVERLAY qualifiers are
valid, used in the same way as with PLOT, CONTOUR and SHADE.

Appendix C Sec2.6 LINE n, mark, use

The original PPL command has been modified. PPL+ uses GKS line bundles to specify line type,
thickness, and color. A number of line bundles are defined for each device type and their characteristics
depend on the capabilities of the device. See "GKS line bundles" for this information. The LINE
command use argument no longer specifies the line type -- whether the line is to be dashed or solid.
 Specification of the use of marks remains the same.

 n line number

 mark data mark

 use line/mark use specification
0 - line connecting points and no mark at points
1 - mark data points
2 - mark end points only
3 - only marks (no line)

Appendix C Sec2.7 LIST arg

New arguments are available to the LIST command to request information about the settings of the
added features.

 arg New arguments are ALINE, SHAKEY, and SHASET.

Appendix C Sec2.8 PEN n, ndx

This command has been modified with the use of GKS line bundles in PPL+. It now specifies the line
bundle index associated with each line. See section "GKS line bundles" (p. 483) for the type, thickness,
and color representation for each line bundle.

 n The line number. If n is 0, sets the pen used to plot the axes and labels.

 ndx sets the line bundle index to be used for line n. Default is 1.

Appendix C Sec2.9 PLTNME metafile_name

Modified to be compatible with GKS metafile use. Specifies the name to be used when a metafile is
being made with each plot. The default is `metafile.plt'.

Appendix C Sec2.10 PLTYPE icode META

PLTYPE 3, GKS output, currently supports only X Windows output. Hardcopy can be generated using
the gksm2ps command.

 icode must be 3 to use the new features.

A GKS metafile with the default name `metafile.plt' (with sequential version numbers for subsequent
plots) is produced with each plot when META is specified.

After the metafile is set, if you wish to deactivate the metafile output, reenter the PLTYPE command
without entering META, e.g., PLTYPE 3. To reactivate, reenter PLTYPE including the META
specification, .e.g., PLTYPE 3 META. The gksm2ps command translates the metafiles and generates
PostScript output from them. See the Ferret Users Guidefor information on gkem2ps.

Appendix C Sec2.11 SHADE/qualifier

Generates a fill area plot of a 2-d field. A rectangular grid is defined when visualizing 2-d fields in PPL;
a grid cell is associated with each point. The SHADE command fills in each grid cell with a color
determined by the field value at the grid points.

 The LEV and LIMITS commands can be used, in a way identical to their use with CONTOUR, to
determine the levels shaded, and specify intervals. The SHAKEY and SHASET commands also control
the appearance of the plot; default colors (or patterns) and key attributes will be used if not specified.
 The /[NO]WAIT and /[NO]OVERLAY qualifiers are valid, used in the same way as with PLOT and
CONTOUR.

Appendix C Sec2.12 SHAKEY do_key, orient, klab_siz, klab_inc, klab_dig,
klab_len, kx_lo, kx_hi, ky_lo, ky_hi

 This command controls the attributes of the key generated by the SHADE command. The key
associates the colors or patterns used in the plot with the field values; its use is optional. LIST
SHAKEY will list current settings of the key.

 do_key If 0 the key will not be displayed; if 1 the key will be displayed. Default is 1.

 orient If 0 the key is horizontal (by default on top of the figure); if 1 the key is vertical (by default on
the right). Default value is 0.

 klab_siz If non-zero, klab_siz is the height of key label characters in inches. If 0, SHADE selects a
reasonable height; default is 0.

klab_inc If non-zero every klab_inc key level is labeled; if 0, SHADE selects a suitable value. Default
value is 0.

 klab_dig is the number of significant digits (klab_dig > 0) or decimal places (klab_dig < 0) in the key.
 Default is 3.

klab_len is the maximum number of characters in a key label. Default is 9.

kx_lo X-coordinate of the left side of the key, in inches.

kx_hi X-coordinate of the right side.

ky_lo Y-coordinate of the bottom of the key, in inches.

ky_hi Y-coordinate of the top.

Example:

SHAKEY 1, 1, 0, 3, 4, 8, 9.4, 10.2, 1.4, 7.4

Specifies that the SHADE command draw a vertical key with label size selected automatically and every
third color of the key labeled. Labels will contain 4 significant digits to a maximum of 8 digits. The
entire key will occupy a rectangle from (9.4,1.4) to (10.2,7.4) in inches.

Appendix C Sec2.13 SHASET

SHASET set_pt, red, green, blue

SHASET SAVE=spknme

SHASET SPECTRUM=spknme

SHASET DEFAULT

SHASET PROTECT

SHASET RESET

This command sets the colors used in the plot generated by the SHADE and FILL commands, and takes
several forms. By default the shaded plots use a spectrum of color from blue to red. A user-defined
selection of colors can be chosen, saved for future use, and recalled by name.

SHASET uses the following approach in defining a spectrum. The levels set by the LEV command have
lower and upper bounds; SHASET defines a scale from 0 to 100 which spans the interval defined by
these bounds. With SHASET you may specify a color at any point along the scale by setting a control
point on the scale, along with the red, green, and blue fractions (between 0 and 100% of maximum
intensity) defining the color at that point.

A spectrum is built up by setting colors at a number of points. The SHADE and FILL routines linearly
interpolate each red, green, and blue fraction between set points to achieve a smooth transition from
point to point.

When you are interested in creating a custom spectrum to use in SHADE and FILL plots, first execute
SHASET with no arguments. This clears all set points except the bottom and top of the scale; the
bottom, at zero, is set to black (red, green, and blue fractions all 0% of maximum intensity). The top, at
100, is set to white (with red, green, and blue all 100%). SHASET can then be used to set any point in
the scale to any color.

set_pt defines a point in a scale, from 0 to 100, that spans the levels as set in the LEV command. Set_pt
can be negative; when set negative, SHASET deletes this set point from the current spectrum, if present.
 RGB values need not be specified in this case.

red The intensity of red in the color at the set point, with a value between 0 and 100%.

green The intensity of green.

blue The intensity of blue.

You may save a spectrum for later use using the SAVE form of the command, where you give the
present spectrum a name. A spectrum can be recalled using the SPECTRUM form of the command.
 One spectrum, `rainbow', the PPL+ default spectrum, is always available for recall.

spknme A name to be associated with a particular spectrum. The spectrum is stored in the current
directory as spknme.spk, is an ASCII file, and can be edited. One spectrum may be saved in memory by
omitting the spknme qualifier (specify SHASET SAVE) ; that spectrum is recalled from memory with
SHASET SPECTRUM.

The DEFAULT form will set the spectrum to the default colors associated with the workstation in use.
 This is not the PPL+ default but is defined for the device by GKS.

If you plan to overlay more than one SHADE or FILL in a single plot , specify SHASET PROTECT
after each use of either to protect the colors already used in the plot. SHASET RESET resets the
internally kept pointer protecting previously used colors, permitting their reassignment. Use the RESET
option when you are ready to begin a fresh non-overlay plot.

Appendix C Sec3 GKS LINE BUNDLES

GKS employees the concept of line bundles, where lines may be referred to by an index; the index
determines the three characteristics of plotted lines, namely, line type, thickness, and color. Line type
means whether the line is solid, dotted, dashed, dashed-dotted, etc. Thickness is measured in units
beginning with one; two is twice as thick as one, followed by three, three times as thick. Colors are
selected using a color index; the color associated with an index can be set using the PPL+ COLOR
command.

The values of these characteristics together determine the line representation. One result of bundle use
is that the same line bundle index may be defined to have different representations on different devices.

On X Windows devices color is usually used to distinguish lines; in that case the line type is always
solid. When Postscript hard copy is made from PPL+ metafiles, lines may be rendered as color, but on
monochrome printers the only available color is black. Consequently, when output is to a monochrome
printer, gksm2ps uses differing line types to distinguish lines instead of color. Lines of differing
thickness are available in both PPL+ X Window output and hard copy.

The table below presents the line thickness, color index and associated default color for color devices
(assuming a white background), and line type for monochrome devices, for the 19 line bundles in PPL+.
 On color devices, the default color of line index 1 is black if the background is white, and white if the
background is black; line bundle index 19 is the background color (the color index is 0).

Bundle
index

Thickness Color Line type (Monochrome devices)

 1 1 1, black solid

 2 1 2, red dashed

 3 1 3, green dotted

4 1 4 , blue dashed-dotted

5 1 5, cyan long dashed

6 1 6, magenta dashed and double-dotted

7 2 1, black solid

8 2 2, red dashed

9 2 3, green dotted

10 2 4, blue dashed-dotted

11 2 5, cyan long dashed

12 2 6, magenta dashed and double-dotted

13 3 1, black solid

14 3 2, red dashed

15 3 3, green dotted

16 3 4, blue dash-dotted

17 3 5, cyan long dashed

18 3 6, magenta dashed and double-dotted

19 1 0, white

Appendix C Sec4 HARD COPY

PostScript formatted files suitable for printing can be generated from PPL+ metafiles using the gksm2ps
command. Several command line arguments permit the tailoring of the output. The command and its
arguments are:

 gksm2ps:Send PostScript translation of GKS metafiles to a file

 usage: gksm2ps [-h] [-p landscape||portrait] [-l ps||cps] [-d cps||phaser] \
 [-X || -o <ps_output_file>] [-R] [-a] [-g WxH+X+Y] [-v] file(s)

 -h print this help message
 -p page orientation, landscape or portrait (default fits to page)
 -l line styles, ps == monochrome (default), cps == color
 -d device type, cps == Postscript (default), phaser == TEK phaser PS
 -X Send output to your Xwindow for preview instead of a file
 -o output file name (default name is 'gksm2ps_output.ps')
 -R do not rename files with a date stamp appended (default is to stamp)
 -a make hard copy the size of the original plot (default fits to page)
 -g WxH+X+Y WIDTH, HEIGHT, XOFFSET, & YOFFSET in points
 -v list version number of gksm2ps and do nothing else
 file(s) The specific metafile(s) to be translated.

 More about the arguments and their effects:

 -h Simply print the above help message.

 -p Specifies the orientation of the plot on the page to be landscape (with the long side of the page
horizontal), or portrait (the short side horizontal). The default fits the plot on the page in the orientaion
that best fits.

 -l Specifies line styles that will be used in the PS output. Monochrome is the default but color may be
more appropriate on color devices.

 -d Specifies the device type. Phaser printers using transfer sheets are PostScript, but the available
plotting area is reduced. The phaser option reduces the size of the plot slightly.

 -X This option lets you preview plots on your workstation screen.

 -o Specifies the output file name. All metafiles translated in a single execution of the gksm2ps
command are writen to a single file.

 -R The default renaming of the metafiles to be translated is intended to help distinguish metafiles that
have been printed from those newly made. This option turns off that renaming.

 -a The original size of the PPL plots is captured in the metafile; use this option to create the hard copy
that size. The default fits the plot to the available page size.

 -g Specify the hard copy plot size and offset in points (72 points = 1 inch).

 -v Just lists the version number.

file(s) Name the metafiles to be translated; separate the file names with a space. Wild card specification
can be used.

